Goulioukina, Nataliya S.’s team published research in Advanced Synthesis & Catalysis in 2017 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: rhodium-catalyzed asymmetric formal olefination or cycloaddition of 1,3-dicarbonyl compounds with 1,6-diynes or 1,6-enynes, stereoselective preparation of homoallylic alcohols via Ir-catalyzed stereoselective transfer hydrogenative crotylation of an allylic acetate with alcohols or aldehydesSafety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

In 2017,Goulioukina, Nataliya S.; Shergold, Ilya A.; Rybakov, Victor B.; Beletskaya, Irina P. published 《One-Pot Two-Step Synthesis of Optically Active α-Amino Phosphonates by Palladium-Catalyzed Hydrogenation/Hydrogenolysis of α-Hydrazono Phosphonates》.Advanced Synthesis & Catalysis published the findings.Safety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole The information in the text is summarized as follows:

An efficient and convenient 1-pot procedure for the stereoselective catalytic synthesis of ring-substituted [amino(phenyl)methyl]phosphonates was developed. The enantioselective hydrogenation of easily available diisopropyl (Z)-[aryl(phenylhydrazono)methyl]phosphonates using Pd(II) acetate as a precatalyst, (R)-2,2′-bis(diphenylphosphino)-5,5′-dichloro-6,6′-dimethoxy-1,1′-biphenyl [(R)-Cl-MeO-BIPHEP] as a ligand, and (1S)-(+)-10-camphorsulfonic acid as an activator in a mixture of 2,2,2-trifluoroethanol and CH2Cl2 at ambient temperature gave corresponding [aryl(2-phenylhydrazino)methyl]phosphonates. The subsequent cleavage of the N-N bond was accomplished with H2 after the addition of Pd on C and MeOH into crude reaction mixture to afford the optically active [amino(aryl)methyl]phosphonates. The method is operationally simple and provides an appreciable enantioselectivity up to 98% ee. The results came from multiple reactions, including the reaction of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Safety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: rhodium-catalyzed asymmetric formal olefination or cycloaddition of 1,3-dicarbonyl compounds with 1,6-diynes or 1,6-enynes, stereoselective preparation of homoallylic alcohols via Ir-catalyzed stereoselective transfer hydrogenative crotylation of an allylic acetate with alcohols or aldehydesSafety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Lin, Qianchi’s team published research in Angewandte Chemie, International Edition in 2022 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Product Details of 210169-54-3

Product Details of 210169-54-3In 2022 ,《Catalytic Regio- and Enantioselective Protonation for the Synthesis of Chiral Allenes: Synergistic Effect of the Counterion and Water》 was published in Angewandte Chemie, International Edition. The article was written by Lin, Qianchi; Zheng, Sujuan; Chen, Long; Wu, Jin; Li, Jinzhao; Liu, Peizhi; Dong, Shunxi; Liu, Xiaohua; Peng, Qian; Feng, Xiaoming. The article contains the following contents:

A highly enantioselective tandem Pudovik addition/[1,2]-phospha-Brook rearrangement of α-alkynylketoamides with diarylphosphine oxides was achieved with a N,N’-dioxide/ScIII complex as the catalyst. This protocol features broad substrate scope, high regio- and enantioselectivity, and good functional-group compatibility, providing a straightforward route to various trisubstituted allenes with a diarylphosphinate functionality in good yields with high enantioselectivities (up to 97% yield, 96% ee). Control experiments and theor. calculations revealed that a synergistic effect of the counterion and water was critical for the regio- and enantioselective protonation after [1,2]-phospha-Brook rearrangement. The synthetic utility of this methodol. was demonstrated by the conversion of products into complex bridged polycyclic architectures through intramol. dearomatizing arene/allene cycloaddition The experimental part of the paper was very detailed, including the reaction process of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Product Details of 210169-54-3)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Product Details of 210169-54-3

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Kubota, Koji’s team published research in Journal of the American Chemical Society in 2016 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Recommanded Product: 210169-54-3

Recommanded Product: 210169-54-3In 2016 ,《Enantioselective Synthesis of Chiral Piperidines via the Stepwise Dearomatization/Borylation of Pyridines》 appeared in Journal of the American Chemical Society. The author of the article were Kubota, Koji; Watanabe, Yuta; Hayama, Keiichi; Ito, Hajime. The article conveys some information:

We have developed a novel approach for the synthesis of enantioenriched 3-boryl-tetrahydropyridines via the Cu(I)-catalyzed regio-, diastereo-, and enantioselective protoborylation of 1,2-dihydropyridines, which were obtained by the partial reduction of the pyridine derivatives This dearomatization/enantioselective borylation stepwise strategy provides facile access to chiral piperidines together with the stereospecific transformation of a stereogenic C-B bond from readily available starting materials. Furthermore, the utility of this method is demonstrated for the concise synthesis of the antidepressant drug (-)-paroxetine. A theor. study of the reaction mechanism is also described. After reading the article, we found that the author used (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Recommanded Product: 210169-54-3)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Recommanded Product: 210169-54-3

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Zhang, Jinyu’s team published research in Angewandte Chemie, International Edition in 2021 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.Reference of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Zhang, Jinyu; Yan, Nuo; Ju, Cheng-Wei; Zhao, Dongbing published their research in Angewandte Chemie, International Edition in 2021. The article was titled 《Nickel(0)-Catalyzed Asymmetric Ring Expansion Toward Enantioenriched Silicon-Stereogenic Benzosiloles》.Reference of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole The article contains the following contents:

The development of a straightforward strategy to obtain enantioenriched silicon-stereogenic benzosiloles remains a challenging yet appealing synthesis venture due to their potential future application in chiral electronic and optoelectronic devices. In this context, all of the existing methods rely on Rh-catalyzed systems and are somewhat limited in scope. Herein, we disclose the first Ni0-catalyzed ring expansion process that enables the preparation of benzosiloles possessing tetraorganosilicon stereocenters in excellent yields and enantioselectivities. The presented catalysis strategy is further applied to the asym. synthesis of silicon-stereogenic bis-silicon-bridged π-extended systems. Preliminary studies reveal that such compounds exhibit fluorescence emission, Cotton effects and circularly polarized luminescence (CPL) activity. After reading the article, we found that the author used (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Reference of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.Reference of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Kita, Yusuke’s team published research in Angewandte Chemie, International Edition in 2016 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.Electric Literature of C38H28O4P2

In 2016,Kita, Yusuke; Hida, Shoji; Higashihara, Kenya; Jena, Himanshu Sekhar; Higashida, Kosuke; Mashima, Kazushi published 《Chloride-Bridged Dinuclear Rhodium(III) Complexes Bearing Chiral Diphosphine Ligands: Catalyst Precursors for Asymmetric Hydrogenation of Simple Olefins》.Angewandte Chemie, International Edition published the findings.Electric Literature of C38H28O4P2 The information in the text is summarized as follows:

Efficient rhodium(III) catalysts were developed for asym. hydrogenation of simple olefins. A series of chloride-bridged dinuclear rhodium(III) complexes were synthesized from the rhodium(I) precursor [RhCl(cod)]2, chiral diphosphine ligands, and hydrochloric acid. Complexes from the series acted as efficient catalysts for asym. hydrogenation of (E)-prop-1-ene-1,2-diyldibenzene and its derivatives without any directing groups, in sharp contrast to widely used rhodium(I) catalytic systems that require a directing group for high enantioselectivity. The catalytic system was applied to asym. hydrogenation of allylic alcs., alkenylboranes, and unsaturated cyclic sulfones. Control experiments support the superiority of dinuclear rhodium(III) complexes over typical rhodium(I) catalytic systems. The experimental part of the paper was very detailed, including the reaction process of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Electric Literature of C38H28O4P2)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.Electric Literature of C38H28O4P2

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Ye, Xiang-Yu’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2021 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Safety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Ye, Xiang-Yu; Liang, Zhi-Qin; Jin, Cong; Lang, Qi-Wei; Chen, Gen-Qiang; Zhang, Xumu published an article in 2021. The article was titled 《Design of oxa-spirocyclic PHOX ligands for the asymmetric synthesis of lorcaserin via iridium-catalyzed asymmetric hydrogenation》, and you may find the article in Chemical Communications (Cambridge, United Kingdom).Safety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole The information in the text is summarized as follows:

Phosphine-oxazoline (PHOX) ligands are a very important class of privileged ligands in asym. catalysis. A series of highly rigid oxa-spiro phosphine-oxazoline (O-SIPHOX) ligands based on O-SPINOL was synthesized efficiently, and their iridium complexes were synthesized by coordination of the O-SIPHOX ligands to [Ir(cod)Cl]2 in the presence of sodium tetrakis-3,5-bis(trifluoromethyl)phenylborate (NaBArF). The cationic iridium complexes showed high reactivity and excellent enantioselectivity in the asym. hydrogenation of 1-methylene-tetrahydro-benzo[d]azepin-2-ones (up to 99% yield and up to 99% ee). A key intermediate of the anti-obesity drug lorcaserin could be efficiently synthesized using this protocol. The experimental process involved the reaction of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Safety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Safety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Zhao, Can’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2020 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: rhodium-catalyzed asymmetric formal olefination or cycloaddition of 1,3-dicarbonyl compounds with 1,6-diynes or 1,6-enynes, stereoselective preparation of homoallylic alcohols via Ir-catalyzed stereoselective transfer hydrogenative crotylation of an allylic acetate with alcohols or aldehydesRecommanded Product: (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

《Enantioselective total synthesis of furofuran lignans via Pd-catalyzed asymmetric allylic cycloaddition of vinylethylene carbonates with 2-nitroacrylates》 was written by Zhao, Can; Khan, Ijaz; Zhang, Yong Jian. Recommanded Product: (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole And the article was included in Chemical Communications (Cambridge, United Kingdom) in 2020. The article conveys some information:

Herein, a practical and efficient approach to tetrahydrofurans with three-stereocenters has been developed through Pd-catalyzed asym. allylic cycloaddition of vinylethylene carbonates (VECs) with 2-nitroacrylates under mild conditions. By using this asym. catalytic reaction as a key step, several furofuran lignans with stereodivergency have been effectively synthesized through 5- or 6-step sequences from readily available starting materials. The experimental part of the paper was very detailed, including the reaction process of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Recommanded Product: (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: rhodium-catalyzed asymmetric formal olefination or cycloaddition of 1,3-dicarbonyl compounds with 1,6-diynes or 1,6-enynes, stereoselective preparation of homoallylic alcohols via Ir-catalyzed stereoselective transfer hydrogenative crotylation of an allylic acetate with alcohols or aldehydesRecommanded Product: (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Tsukamoto, Hirokazu’s team published research in Bulletin of the Chemical Society of Japan in 2019 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.Application of 210169-54-3

In 2019,Bulletin of the Chemical Society of Japan included an article by Tsukamoto, Hirokazu; Kawase, Ayumu; Omura, Hirotaka; Doi, Takayuki. Application of 210169-54-3. The article was titled 《Key Factors for High Diastereo- and Enantioselectivity of Umpolung Cyclizations of Aldehyde-Containing Allylpalladium Intermediates》. The information in the text is summarized as follows:

Two palladium/chiral diphosphine-catalyzed umpolung cyclizations of aldehyde-containing allylic acetates and allenes with arylboronic acid are fully investigated to establish key factors in their high stereoselectivities. Both cyclization reactions afford cis-disubstituted pyrrolidine and THF. These occur in high diastereo- and enantioselectivities through a common cationic (Z)-η1-allylpalladium, toward which a ring strain generated in the cyclization step leading to trans-isomers biases the equilibrium through η3-η1-η3-complex in the former cyclization. Varied diastereoselectivities were observed in the formation of five-membered carbocycles and six-membered heterocycles. These reflect release of a ring strain generated in the cyclization step leading to trans-isomers and a different distribution of the (Z)- and the (E)-η1-allylpalladium intermediates generated by the oxidative addition of allylic acetates to Pd(0) or carbopalladation of allenes, resp. A sterically demanding substituent at the center of the allyl moiety is necessary for high diastereo- and enantioselectivity. The enantioselectivity of the former cyclization was lowered by the presence of organometallic reductants or reagents, possibly causing the formation of neutral η1-allylpalladium species. We used a chiral allylic acetate containing (E)-deuterium-labeled alkene to demonstrate that the electrophilic attack of the aldehyde to the allyl ligand occurred on the side where the palladium existed, consistent with the Zimmerman-Traxler transition state. In the experiment, the researchers used (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Application of 210169-54-3)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.Application of 210169-54-3

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Garza, Victoria J.’s team published research in Journal of the American Chemical Society in 2016 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.SDS of cas: 210169-54-3

SDS of cas: 210169-54-3In 2016 ,《Hydroxymethylation beyond Carbonylation: Enantioselective Iridium-Catalyzed Reductive Coupling of Formaldehyde with Allylic Acetates via Enantiotopic π-Facial Discrimination》 appeared in Journal of the American Chemical Society. The author of the article were Garza, Victoria J.; Krische, Michael J.. The article conveys some information:

Chiral iridium complexes modified by SEGPHOS catalyze the 2-propanol-mediated reductive coupling of branched allylic acetates with formaldehyde to form primary homoallylic alcs. with excellent control of regio- and enantioselectivity. These processes, which rely on enantiotopic π-facial discrimination of σ-allyliridium intermediates, represent the first examples of enantioselective formaldehyde C-C coupling beyond aldol addition The experimental part of the paper was very detailed, including the reaction process of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3SDS of cas: 210169-54-3)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.SDS of cas: 210169-54-3

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Kalkman, Eric D.’s team published research in Journal of the American Chemical Society in 2021 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: rhodium-catalyzed asymmetric formal olefination or cycloaddition of 1,3-dicarbonyl compounds with 1,6-diynes or 1,6-enynes, stereoselective preparation of homoallylic alcohols via Ir-catalyzed stereoselective transfer hydrogenative crotylation of an allylic acetate with alcohols or aldehydesReference of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Kalkman, Eric D.; Hartwig, John F. published an article in 2021. The article was titled 《Direct Observation of Diastereomeric α-C-Bound Enolates during Enantioselective α-Arylations: Synthesis, Characterization, and Reactivity of Arylpalladium Fluorooxindole Complexes》, and you may find the article in Journal of the American Chemical Society.Reference of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole The information in the text is summarized as follows:

The Pd-catalyzed asym. α-arylation of carbonyl compounds is a valuable strategy to form benzylic stereocenters. However, the origin of the stereoselectivity of these reactions is poorly understood, and little is known about the reactivity of the putative diastereomeric arylpalladium enolate intermediates. To this end, the authors report the synthesis and characterization of diphosphine-ligated arylpalladium fluoroenolate complexes, including complexes bearing a metal-bound, stereogenic C and an enantioenriched chiral diphosphine ligand. These complexes reductively eliminate to form chiral α-aryl-α-fluorooxindoles with enantioselectivities and rates that are relevant to those of the catalytic process with SEGPHOS as the ancillary ligand. Kinetic studies showed that the rate of reductive elimination is slightly slower than the rate of epimerization of the intermediate, causing the reductive elimination step to impart the greatest influence on the enantioselectivity. DFT calculations of these processes are consistent with these exptl. rates and suggest that the minor diastereomer forms the major enantiomer of the product. The rates of reductive elimination from complexes containing a variety of electronically varied aryl ligands revealed the unusual trend that complexes bearing more electron-rich aryl ligands react faster than those bearing more electron-poor aryl ligands. Noncovalent Interaction (NCI) and Natural Bond Orbital (NBO) analyses of the transition-state structures for reductive elimination from the SEGPHOS-ligated complexes revealed key donor-acceptor interactions between the Pd center and the fluoroenolate fragment. These interactions stabilize the pathway to the major product enantiomer more strongly than they stabilize that to the minor enantiomer. The results came from multiple reactions, including the reaction of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Reference of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: rhodium-catalyzed asymmetric formal olefination or cycloaddition of 1,3-dicarbonyl compounds with 1,6-diynes or 1,6-enynes, stereoselective preparation of homoallylic alcohols via Ir-catalyzed stereoselective transfer hydrogenative crotylation of an allylic acetate with alcohols or aldehydesReference of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis