With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5518-52-5,Tri(furan-2-yl)phosphine,as a common compound, the synthetic route is as follows.
5518-52-5, EXAMPLE 44A 1,3-dinitro-2-vinylbenzene 1-Chloro-2,6-dinitrobenzene (1.00 g, 4.94 mmoles, purchased from Lancaster) tris(dibenzylideneacetone)dipalladium (0.113 g, 0.123 mmoles), tri-2-furylphosphine (0.229 g, 0.987 mmoles), copper(I) iodide (0.094 g, 0.494 mmoles), and lithium chloride (0.628 g, 14.8 mmoles) in N,N-dimethylformamide (15 mL) were treated with tributylethenylstannane (2.90 mL, 9.87 mmoles). The reaction mixture was degassed with nitrogen, stirred overnight at room temperature and then heated at 80 C. for 4 hours. The reaction mixture was then diluted with ethyl acetate and washed with water and brine. The organic phase was dried with sodium sulfate, filtered and the filtrate concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, 10% ethyl acetate/hexanes) to provide the title compound (0.669 g, 70%). MS (DCI) m/z 194 (M+H)+.
5518-52-5 Tri(furan-2-yl)phosphine 521585, achiral-phosphine-ligands compound, is more and more widely used in various.
Reference£º
Patent; Link, James T.; Sorensen, Bryan K.; Patel, Jyoti R.; Arendsen, David L.; Li, Gaoquan; US2002/156311; (2002); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate