Zhao, Jianchao et al. published their research in Journal of Separation Science in 2015 | CAS: 297752-25-1

(R)-4-Hydroxy-8,9,10,11,12,13,14,15-octahydrodinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide (cas: 297752-25-1) belongs to chiral phosphine ligands. Phosphine-catalyzed asymmetric reactions are now powerful and versatile tools for the construction of C–C, C–N, C–O, and C–S bonds and for the syntheses of functionalized carbocycles and heterocycles. Trivalent phosphorus compounds called phosphines have a tetrahedral electron-group geometry which makes them structurally analogous to amines.Related Products of 297752-25-1

Improvement of chiral stationary phases based on cinchona alkaloids bonded to crown ethers by chiral modification was written by Zhao, Jianchao;Wu, Haixia;Wang, Dongqiang;Wu, Haibo;Cheng, Lingping;Jin, Yu;Ke, Yanxiong;Liang, Xinmiao. And the article was included in Journal of Separation Science in 2015.Related Products of 297752-25-1 This article mentions the following:

To improve the chiral recognition capability of a cinchona alkaloid crown ether chiral stationary phase, the crown ether moiety was modified by the chiral group of (1S,2S)-2-aminocyclohexyl phenylcarbamate. Both quinine and quinidine-based stationary phases were evaluated by chiral acids, chiral primary amines and amino acids. The quinine/quinidine and crown ether provided ion-exchange sites and complex interaction site for carboxyl group and primary amine group in amino acids, resp., which were necessary for the chiral discrimination of amino acid enantiomers. The introduction of the chiral group greatly improved the chiral recognition for chiral primary amines. The structure of crown ether moiety was proved to play a dominant role in the chiral recognitions for chiral primary amines and amino acids. In the experiment, the researchers used many compounds, for example, (R)-4-Hydroxy-8,9,10,11,12,13,14,15-octahydrodinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide (cas: 297752-25-1Related Products of 297752-25-1).

(R)-4-Hydroxy-8,9,10,11,12,13,14,15-octahydrodinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide (cas: 297752-25-1) belongs to chiral phosphine ligands. Phosphine-catalyzed asymmetric reactions are now powerful and versatile tools for the construction of C–C, C–N, C–O, and C–S bonds and for the syntheses of functionalized carbocycles and heterocycles. Trivalent phosphorus compounds called phosphines have a tetrahedral electron-group geometry which makes them structurally analogous to amines.Related Products of 297752-25-1

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Wang, Dongqiang et al. published their research in Journal of Separation Science in 2015 | CAS: 297752-25-1

(R)-4-Hydroxy-8,9,10,11,12,13,14,15-octahydrodinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide (cas: 297752-25-1) belongs to chiral phosphine ligands. Although many reactions require more nucleophilic trialkylphosphines as catalysts, only a few chiral trialkylphosphines are available. Indeed, very little research on chiral tertiary phosphine-catalyzed asymmetric reactions occurred prior to the year 2000.Related Products of 297752-25-1

Preparation and evaluation of novel chiral stationary phases based on quinine derivatives comprising crown ether moieties was written by Wang, Dongqiang;Zhao, Jianchao;Wu, Haixia;Wu, Haibo;Cai, Jianfeng;Ke, Yanxiong;Liang, Xinmiao. And the article was included in Journal of Separation Science in 2015.Related Products of 297752-25-1 This article mentions the following:

The C9-position of quinine was modified by meta- or para-substituted benzo-18-crown-6, and immobilized on 3-mercaptopropyl-modified silica gel through the radical thiol-ene addition reaction. These two chiral stationary phases were evaluated by chiral acids, amino acids, and chiral primary amines. The crown ether moiety on the quinine anion exchanger provided a ligand-exchange site for primary amino groups, which played an important role in the retention and enantioselectivity for chiral compounds containing primary amine groups. These two stationary phases showed good selectivity for some amino acids. The complex interaction between crown ether and protonated primary amino group was studied by the addition of inorganic salts such as LiCl, NH4Cl, NaCl, and KCl to the mobile phase. The resolution results showed that the simultaneous interactions between two function moieties (quinine and crown ether) and amino acids were important for the chiral separation In the experiment, the researchers used many compounds, for example, (R)-4-Hydroxy-8,9,10,11,12,13,14,15-octahydrodinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide (cas: 297752-25-1Related Products of 297752-25-1).

(R)-4-Hydroxy-8,9,10,11,12,13,14,15-octahydrodinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide (cas: 297752-25-1) belongs to chiral phosphine ligands. Although many reactions require more nucleophilic trialkylphosphines as catalysts, only a few chiral trialkylphosphines are available. Indeed, very little research on chiral tertiary phosphine-catalyzed asymmetric reactions occurred prior to the year 2000.Related Products of 297752-25-1

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis