Trost, Barry M’s team published research in Angewandte Chemie, International Edition in 2005 | 152140-65-3

Angewandte Chemie, International Edition published new progress about Allylation catalysts. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, HPLC of Formula: 152140-65-3.

Trost, Barry M.; Frederiksen, Mathias U. published the artcile< Palladium-catalyzed asymmetric allylation of prochiral nucleophiles: synthesis of 3-allyl-3-aryl oxindoles>, HPLC of Formula: 152140-65-3, the main research area is arylindolinone allyl acetate allylation palladium chiral phosphine; allyl arylindolinone asym preparation; palladium chiral phosphine asym allylation catalyst.

Excellent yields and enantioselectivies were attained in the synthesis of 3-alkyl-3-aryloxindoles, e.g., I, based on the Pd-catalyzed asym. allylic alkylation reaction. This approach utilizes a nonbasic hydroxylic additive in the transformation of 3-aryloxindoles into complex, synthetically valuable oxindoles.

Angewandte Chemie, International Edition published new progress about Allylation catalysts. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, HPLC of Formula: 152140-65-3.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Grasa, Gabriela A’s team published research in Tetrahedron Letters in 2008-09-01 | 325168-88-5

Tetrahedron Letters published new progress about Hydrogenation catalysts, stereoselective. 325168-88-5 belongs to class chiral-phosphine-ligands, and the molecular formula is C48H50P2, Application In Synthesis of 325168-88-5.

Grasa, Gabriela A.; Zanotti-Gerosa, Antonio; Ghosh, Shyamali; Teleha, Christopher A.; Kinney, William A.; Maryanoff, Bruce E. published the artcile< Efficient, enantioselective synthesis of a β,β-disubstituted carboxylic acid by Ru-XylPhanePhos-catalyzed asymmetric hydrogenation>, Application In Synthesis of 325168-88-5, the main research area is piperidinebutenoic acid quinolinyl stereoselective reduction phanephos ruthenium catalyst.

Enantioselective preparation of a key αvβ3 integrin antagonist intermediate, (3S)-3-(quinolin-3-yl)-4-(1-tert.-butoxycarbonylpiperidin-4-yl)butanoic acid, was accomplished via catalytic asym. hydrogenation of the corresponding but-2-enoic acid. The successful application of a Ru-(R)-XylPhanePhos catalyst to this type of substrate is unprecedented. In situ NMR experiments of pre-catalyst formation/activation by CH3CO2H, and reaction parameter modification, revealed that [Ru(COD)(CF3CO2)2]2/(R)-XylPhanePhos is a highly active and efficient catalytic system.

Tetrahedron Letters published new progress about Hydrogenation catalysts, stereoselective. 325168-88-5 belongs to class chiral-phosphine-ligands, and the molecular formula is C48H50P2, Application In Synthesis of 325168-88-5.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Nishida, Goushi’s team published research in Angewandte Chemie, International Edition in 2007-06-30 | 139139-93-8

Angewandte Chemie, International Edition published new progress about Crystal structure. 139139-93-8 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, HPLC of Formula: 139139-93-8.

Nishida, Goushi; Noguchi, Keiichi; Hirano, Masao; Tanaka, Ken published the artcile< Asymmetric assembly of aromatic rings to produce tetra-ortho-substituted axially chiral biaryl phosphorus compounds>, HPLC of Formula: 139139-93-8, the main research area is asym aromatic ring substituted tetra axially chiral biaryl phosphorus; dicyclohexylphosphinoyl methoxynaphthalenyl dihydroisobenzofuran preparation crystal mol structure.

Densely substituted title compounds can be obtained efficiently through an enantioselective [2 + 2 + 2] cycloaddition catalyzed by a cationic Rh1/H8-binap (H8-binap = 2,2′-bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl) complex. This method is highly up to > 99% yield practical in view of the ready access to up to 98% ee substrates, mild reaction conditions, operational simplicity, and high catalytic activity. The crystal structure of one of the biaryl phosphorus compound is described.

Angewandte Chemie, International Edition published new progress about Crystal structure. 139139-93-8 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, HPLC of Formula: 139139-93-8.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Sagae, Hiromi’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2008-08-28 | 139139-86-9

Chemical Communications (Cambridge, United Kingdom)published new progress about Alkenynes Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation) (dienynes). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Recommanded Product: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl.

Sagae, Hiromi; Noguchi, Keiichi; Hirano, Masao; Tanaka, Ken published the artcile< Rhodium-catalyzed enantio- and diastereoselective intramolecular [2 + 2 + 2] cycloaddition of unsymmetrical dienynes>, Recommanded Product: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl, the main research area is dienyne rhodium catalyst intramol cycloaddition; polycyclic cyclohexene derivative stereoselective preparation crystal structure; benzopyran derivative stereoselective preparation; biscyclooctadienerhodium tetrafluoroborate octahydrobinap asym cycloaddition catalyst.

A cationic rhodium(I)/(R)-H8-BINAP or (R)-Segphos complex catalyzes an intramol. [2 + 2 + 2] cycloaddition of unsym. dienynes, leading to fused tri- and tetracyclic cyclohexenes bearing two tertiary or quaternary carbon centers in high yields with high enantio- and diastereoselectivity.

Chemical Communications (Cambridge, United Kingdom)published new progress about Alkenynes Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation) (dienynes). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Recommanded Product: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

De, Subhadip’s team published research in Journal of Organic Chemistry in 2016-12-16 | 152140-65-3

Journal of Organic Chemistrypublished new progress about Aldol addition catalysts, stereoselective. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Name: N,N’-(11R,12R)-(9,10-Dihydro-9,10-ethanoanthracene-11,12-diyl)bis[2-(diphenylphosphino)benzamide].

De, Subhadip; Das, Mrinal Kanti; Roy, Avishek; Bisai, Alakesh published the artcile< Synthesis of 2-Oxindoles Sharing Vicinal All-Carbon Quaternary Stereocenters via Organocatalytic Aldol Reaction>, Name: N,N’-(11R,12R)-(9,10-Dihydro-9,10-ethanoanthracene-11,12-diyl)bis[2-(diphenylphosphino)benzamide], the main research area is oxindole preparation organocatalytic enantioselective aldol; folicanthine formal total synthesis organocatalytic enantioselective aldol.

An organocatalytic enantioselective aldol reaction using paraformaldehyde as the C1-unit has been developed for the synthesis of 2-oxindoles sharing vicinal all-carbon quaternary stereocenters. The methodol. is eventually employed in the formal total synthesis of (+)-folicanthine (I).

Journal of Organic Chemistrypublished new progress about Aldol addition catalysts, stereoselective. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Name: N,N’-(11R,12R)-(9,10-Dihydro-9,10-ethanoanthracene-11,12-diyl)bis[2-(diphenylphosphino)benzamide].

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Yang, Bo’s team published research in Angewandte Chemie, International Edition in 2020-11-23 | 139139-86-9

Angewandte Chemie, International Editionpublished new progress about Crystal structure. 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Formula: C44H40P2.

Yang, Bo; Yang, Wu; Guo, Yonghong; You, Lijun; He, Chuan published the artcile< Enantioselective Silylation of Aliphatic C-H Bonds for the Synthesis of Silicon-Stereogenic Dihydrobenzosiloles>, Formula: C44H40P2, the main research area is rhodium catalyzed enantioselective silylation cyclization styrene derivative arylsilane; silicon stereogenic dihydrobenzosilole containing dehydrocholesterol preparation crystal structure; mol structure silicon stereogenic dihydrobenzosilole containing dehydrocholesterol; C(sp3)−H silylation; asymmetric catalysis; dihydrobenzosiloles; hydrosilylation; silanes.

A Rh(I)-catalyzed enantioselective silylation of aliphatic C-H bonds for the synthesis of Si-stereogenic dihydrobenzosiloles is demonstrated. This reaction involves a highly enantioselective intramol. C(sp3)-H silylation of dihydrosilanes, followed by a stereospecific intermol. alkene hydrosilylation leading to the asym. tetrasubstituted silanes. A wide range of dihydrosilanes and alkenes displaying various functional groups are compatible with this process, giving access to a variety of highly functionalized Si-stereogenic dihydrobenzosiloles in good to excellent yields and enantioselectivities.

Angewandte Chemie, International Editionpublished new progress about Crystal structure. 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Formula: C44H40P2.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Feng, Yuting’s team published research in Tetrahedron in 2022-08-27 | 277306-29-3

Tetrahedronpublished new progress about Enantioselective synthesis. 277306-29-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C32H40FeP2, SDS of cas: 277306-29-3.

Feng, Yuting; Viereck, Peter; Li, Shi-Guang; Tsantrizos, Youla S. published the artcile< Rh(I)-catalyzed asymmetric transfer hydrogenation of α-enamidophosphonates to α-aminophosphonates>, SDS of cas: 277306-29-3, the main research area is rhodium catalyst stereoselective transfer hydrogenation enamidophosphonate mechanism; amino phosphonate preparation stereoselective library.

An asym. Rh-catalyzed transfer hydrogenation was developed for the conversion of α-enamidophosphonates to α-aminophosphonates (α-APs) using isopropanol as the hydride donor. This methodol. is amenable to a broad substrate scope. A library of structurally diverse α-APs was synthesized in moderate to good yield and enantiomeric excess, having a methylene moiety at Cβ and aryl, heteroaryl or alkyl side chains.

Tetrahedronpublished new progress about Enantioselective synthesis. 277306-29-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C32H40FeP2, SDS of cas: 277306-29-3.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Shintani, Ryo’s team published research in Journal of the American Chemical Society in 2006-05-03 | 139139-86-9

Journal of the American Chemical Societypublished new progress about Boronic acids Role: RCT (Reactant), RACT (Reactant or Reagent) (arylboronic acids). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Electric Literature of 139139-86-9.

Shintani, Ryo; Duan, Wei-Liang; Hayashi, Tamio published the artcile< Rhodium-Catalyzed Asymmetric Construction of Quaternary Carbon Stereocenters: Ligand-Dependent Regiocontrol in the 1,4-Addition to Substituted Maleimides>, Electric Literature of 139139-86-9, the main research area is rhodium complex asym addition reaction regioselectivity enantioselectivity; arylboronic acid maleimide asym addition reaction.

A rhodium-catalyzed asym. 1,4-addition of arylboronic acids of formula ArB(OH)2 (Ar = Ph, 2-naphthyl, 2-methylphenyl, 4-methoxyphenyl, 4-fluorophenyl) to substituted maleimides (I; R = Et, Me, i-Pr) has been described. The regioselectivity in this reaction is controlled by the choice of ligand (dienes or bisphosphines), and 1,4-adducts with a quaternary stereocenter (II; Ar, R = same as above) can be obtained with high regio- and enantioselectivity over 1,4-adducts with a secondary carbon center (III; Ar, R = same as above) by the use of (R)-H8-BINAP (IV). For example, I (R = Et), 3.0 equiv phenylboronic acid, 2.5 mol% divinylrhodium chloride dimer, IV (Rh/ligand = 1:1), and 0.5 equiv KOH were stirred in a 10:1 mixture of dioxane and water at 50° for 3 h to give a 87:13 mixture of II (Ar = Ph, R = Et) and III (Ar = Ph, R = Et) in 98% yield.

Journal of the American Chemical Societypublished new progress about Boronic acids Role: RCT (Reactant), RACT (Reactant or Reagent) (arylboronic acids). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Electric Literature of 139139-86-9.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Trost, Barry M’s team published research in Organic Letters in 2007-09-27 | 152140-65-3

Organic Letterspublished new progress about Allylic alkylation catalysts, stereoselective (regioselective). 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Formula: C54H42N2O2P2.

Trost, Barry M.; Brennan, Megan K. published the artcile< Palladium-Catalyzed Regio- and Enantioselective Allylic Alkylation of Bis Allylic Carbonates Derived from Morita-Baylis-Hillman Adducts>, Formula: C54H42N2O2P2, the main research area is Morita Baylis Hillman adduct regioselective enantioselective allylic alkylation; palladium phosphinonaphthoylaminocyclohexane catalysis regioselective enantioselective allylic alkylation; allylic carbonate regioselective enantioselective allylic alkylation palladium catalysis.

Morita-Baylis-Hillman diene adducts (e.g. (4E)-3-[(ethoxycarbonyl)oxy]-2-methylenehex-4-enoic acid Me ester) were used as substrates in the Pd-catalyzed asym. allylic alkylation reaction with O and C nucleophiles (e.g. p-methoxyphenol) in good regio- and enantioselectivity, e.g. 78 % (88 %ee) (3S,4E)-(+)-3-(4-methoxyphenoxy)-2-methylenehex-4-enoic acid Me ester (>20:1 regioisomers), using Pd2(dba)3, (1S,2S)-1,2-bis[[[2-(diphenylphosphino)naphthalen-1-yl]carbonyl]amino]cyclohexane and tetrabutylammonium triphenyldifluorosilicate as catalyst system in DME at 25°.

Organic Letterspublished new progress about Allylic alkylation catalysts, stereoselective (regioselective). 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Formula: C54H42N2O2P2.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Masutomi, Koji’s team published research in Angewandte Chemie, International Edition in 2012 | 139139-86-9

Angewandte Chemie, International Editionpublished new progress about Alkenynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Synthetic Route of 139139-86-9.

Masutomi, Koji; Sakiyama, Norifumi; Noguchi, Keiichi; Tanaka, Ken published the artcile< Rhodium-Catalyzed Regio-, Diastereo-, and Enantioselective [2+2+2] Cycloaddition of 1,6-Enynes with Acrylamides>, Synthetic Route of 139139-86-9, the main research area is enyne enantioselective diastereoselective regioselective cycloaddition acrylamide rhodium BINAP catalyst; isoindole indene isobenzofuran amide hexahydro enantioselective diastereoselective synthesis.

A variety of partially hydrogenated isoindoles I [X = NTs; R1 = H, Me, Ph; R2 = H, Me, Et, Ph; R3 = R4 = Me, n-Bu, Ph; R3 = Me, R4 = MeO, Ph; R3R4 = (CH2)4] and their carbocyclic I [X = (MeO2C)2C; R1 = R2 = R3 = Me; R4 = Ph] and oxacyclic analogs I (X = O; R1 = n-pentyl; R2 = R3 = Me; R4 = Ph) was synthesized by rhodium(I)/(R)-H8-BINAP-catalyzed asym. [2 + 2 + 2] cycloaddition of 1,6-enynes II with acrylamides H2C:CHC(O)NR3R4. In this catalysis, regioselective insertion of acrylamide into a rhodacyclopentene intermediate and the coordination of the carbonyl group of acrylamide to the cationic rhodium center suppress the undesired β-hydride elimination.

Angewandte Chemie, International Editionpublished new progress about Alkenynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Synthetic Route of 139139-86-9.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate