Simple exploration of 12150-46-8

As the paragraph descriping shows that 12150-46-8 is playing an increasingly important role.

12150-46-8, 1,1-Bis(diphenylphosphino)ferrocene is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: DMPE (102 muL, 0.616 mmol) was slowly added to a yellow suspension of [Pd(TFA)2(TMEDA)] (0.138 g, 0.31 mmol) in CH2Cl2 (3 mL). An initial suspension turned gray. After stirring the reaction mixture for 2 h at room temperature, the solvent was removed under vacuum, and washed with n-hexane. The crude solid was recrystallized from CH2Cl2/hexane to give [Pd(P~P)2](TFA)2 (P~P = DMPE), 2 (0.192 g, 99percent). Complexes 3?8 were analogously prepared. Analytical and spectroscopic data are available as Supporting Information.

As the paragraph descriping shows that 12150-46-8 is playing an increasingly important role.

Reference£º
Article; Kim, Kun-Woo; Kim, Yong-Joo; Lim, Hye Jin; Lee, Soon W.; Bulletin of the Korean Chemical Society; vol. 36; 12; (2015); p. 2952 – 2955;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 15929-43-8

The synthetic route of 15929-43-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15929-43-8,Bis(4-(trifluoromethyl)phenyl)phosphine oxide,as a common compound, the synthetic route is as follows.

General procedure: To a mixture of 2-iodophenol (21c) (1.32 g, 6.00 mmol) and bis(3,5-bis(trifluoromethyl)phenyl)phosphine oxide (22) (2.85 g, 6.01 mmol) dissolved in CCl4 (30 mL) was added triethylamine (1.67 mL, 12.0 mmol) at 0 C. After stirring for 15 min at the same temperature, to the mixture was added an aqueous saturated solution of NH4Cl (40mL). The mixture was extracted with CH2Cl2 (50 mL ¡Á 3), and the combined organicextract was dried (Na2SO4), and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel100 g, n-hexane/EtOAc = 19/1 to 9/1) to give 2-iodophenyl bis(3,5-bis(trifluoromethyl)-phenyl)phosphinate (23c) (3.67 g, 5.30 mmol, 88.4%) as a colorless solid.

The synthetic route of 15929-43-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Nishiyama, Yoshitake; Kamada, Shuhei; Yoshida, Suguru; Hosoya, Takamitsu; Chemistry Letters; vol. 47; 9; (2018); p. 1216 – 1219;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Some tips on 50777-76-9

#N/A

50777-76-9, 2-(Diphenylphosphino)benzaldehyde is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a solution of 2-(diphenylphosphino)benzaldehyde (0.279 g, 0.961 mmol) in CH2Cl2 (10 ml) in a Schlenk tube was added 2-methylaniline (0.103 g, 0.961 mmol) dropwise. Anhydrous magnesium sulfate (~ 0.5 g) was added to the Schlenk tube and the reaction was stirred at room temperature for 20 h. The resulting yellow mixture was filtered to obtain a yellow solution, which gave yellow oil upon evaporation of the solvent. Yield: 0.2990 g (82percent);

#N/A

Reference£º
Article; Motswainyana, William M.; Onani, Martin O.; Madiehe, Abram M.; Saibu, Morounke; Thovhogi, Ntevheleni; Lalancette, Roger A.; Journal of Inorganic Biochemistry; vol. 129; (2013); p. 112 – 118;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Analyzing the synthesis route of 13440-07-8

13440-07-8 Di(naphthalen-1-yl)phosphine oxide 23110917, achiral-phosphine-ligands compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.13440-07-8,Di(naphthalen-1-yl)phosphine oxide,as a common compound, the synthetic route is as follows.

Add 2-ethynylpyridine (0.052 g, 0.5 mmol) to the reaction flask.Dinaphthylphosphorus (0.30 g, 1 mmol),CuI (0.019 g, 0.1 mmol), di-tert-butyl peroxide(0.30 g, 2 mmol), and acetone (2 mL),50oC reaction;TLC tracks the reaction until it is completely over;The crude product obtained after the completion of the reaction was separated by column chromatography (ethyl acetate: petroleum ether = 1:1) to give the desired product. (Yield 63%).

13440-07-8 Di(naphthalen-1-yl)phosphine oxide 23110917, achiral-phosphine-ligands compound, is more and more widely used in various.

Reference£º
Patent; Nantong Textile Silk Industrial Technology Institute; Soochow University (Suzhou); Zou Jianping; Tao Zekun; Lv Shuaishuai; Li Chengkun; Li Jianan; (12 pag.)CN109096336; (2018); A;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 607-01-2

The synthetic route of 607-01-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.607-01-2,Ethyldiphenylphosphine,as a common compound, the synthetic route is as follows.

1.28 g (3.42×10″3 moles) of trichlorotris(tetrahydrofuran)vanadium [VCI3(THF)3], 15 ml of toluene and, subsequently, 2.90 g (1.37×10~2 moles) of (ethyl)diphenylphosphine (P/V molar ratio = 4) were placed into a 100 ml tailed flask. The mixture obtained was left, under vigorous stirring, at room temperature, for 15 minutes and, then, heated under reflux for 1 hour. The suspension obtained was filtered in the hot (60C) and the fraction collected was concentrated, under vacuum, at room temperature. Subsequently, drop by drop, under stirring, about 50 ml of pentane were added, obtaining the precipitation of a purple/gray powder. After about 3 hours, everything was filtered and the solid gray/pink residue obtained was washed with pentane (50 ml) and dried, under vacuum, at room temperature, obtaining 1.8226 g (conversion with respect to starting [VCI3(THF)3] = 91.0%) of complex VCI3(PEtPh2)2 (molecular weight = 585.79 gxmol”1). (0146) Elementary analysis [found (calculated)] C: 57.40% (57.41%); H: 5.10% (5.16%); CI: 18.20% (18.16%); P: 10.07% (10.58%); V: 8.60% (8.70%). (0147) Figure 2 reports the XRD structure of the VCI3(PEtPh2)2 complex obtained. (0148) Table 1 and Table 2 report the crystallographic data of the VCI3(PEtPh2)2 complex obtained

The synthetic route of 607-01-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; VERSALIS S.P.A.; RICCI, Giovanni; LEONE, Giuseppe; SOMMAZZI, Anna; FORNI, Alessandra; MASI, Francesco; (110 pag.)WO2016/128812; (2016); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 564483-18-7

As the paragraph descriping shows that 564483-18-7 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.564483-18-7,2-(Dicyclohexylphosphino)-2′,4′,6′-tri-i-propyl-1,1′-biphenyl,as a common compound, the synthetic route is as follows.

Example 584 86 mg of 4-phenylpiperidine, 0.22 g of cesium carbonate, 2.4 mg of tris(dibenzylideneacetone)dipalladium(0), 1.2 mg of palladium acetate and 6.3 mg of 2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl were added to 3.0 mL of toluene solution containing 0.10 g of tert-butyl 2-(benzamido)-4-bromobenzoate, and the resulting mixture was heated to reflux for 2 hours. After the reaction mixture was cooled to room temperature, 2.4 mg of tris(dibenzylideneacetone)dipalladium(O), 1.2 mg of palladium acetate and 6.3 mg of 2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl were added and the resulting mixture was heated to reflux for 6 hours. After the reaction mixture was cooled to room temperature, ethyl acetate and 10% citric acid aqueous solution were added. The organic layer was separated and dried over anhydrous magnesium sulfate after washed with a saturated sodium chloride aqueous solution, and the solvent was evaporated under reduced pressure. The obtained residue was purified with silica gel column chromatography [PSQ100B (spherical) manufactured by Fuji Silysia Chemical Ltd., eluent; hexane: ethyl acetate = 10:1] to obtain tert-butyl 2-(benzamido)-4-(4-phenylpiperidin-1-yl)benzoate as pale yellow solid.

As the paragraph descriping shows that 564483-18-7 is playing an increasingly important role.

Reference£º
Patent; TOYAMA CHEMICAL CO., LTD.; EP1820795; (2007); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 50777-76-9

As the paragraph descriping shows that 50777-76-9 is playing an increasingly important role.

50777-76-9, 2-(Diphenylphosphino)benzaldehyde is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a mixture of 2-(diphenylphosphino)benzaldehyde(500 mg, 1.72 mmol) and the appropriate amine(1.81 mmol) was added formic acid (1 drop) in MeOH(5 mL). The reaction was allowed to proceed at RT for18 h, at which point the iminophosphine pro-ligand was collected by suction filtration as a pale yellow precipitate. Spectroscopic NMR data were collected in CDCl3 as the pro-ligands decompose in wet DMSO-d6. The spectroscopically pure pro-ligands were used as prepared to make the corresponding platinum(II) complexes.

As the paragraph descriping shows that 50777-76-9 is playing an increasingly important role.

Reference£º
Article; St-Coeur, Patrick-Denis; Adams, Meghan E.; Kenny, Bryanna J.; Stack, Darcie L.; Vogels, Christopher M.; Masuda, Jason D.; Morin, Pier Jr.; Westcott, Stephen A.; Transition Metal Chemistry; vol. 42; 8; (2017); p. 693 – 701;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 932710-63-9

As the paragraph descriping shows that 932710-63-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.932710-63-9,4-(Di-tert-butylphosphino)-N,N-dimethylaniline,as a common compound, the synthetic route is as follows.

To a 500 mL reaction was added 10 g (1,5-cyclooctadiene) palladium dichloride, the reaction flask was replaced with a nitrogen atmosphere,19.6 g of di-tert-butyl-4-dimethylaminophenylphosphine prepared in Example 1 and 200 mL of anhydrous tetrahydrofuran were added, and the mixture was stirred at room temperature for 16 hours,There is a solid precipitation,Filtration and drying gave a pale yellow powder product bis (di-tert-butyl-4-dimethylaminophenylphosphine) palladium chloride 24. 1 g,The yield was 97% (yield based on (1,5-cyclooctadiene) palladium dichloride)The purity of the product was 99.8% by XY-1A intelligent element analyzer.

As the paragraph descriping shows that 932710-63-9 is playing an increasingly important role.

Reference£º
Patent; Panjin Ge Linkaimo Technology Co., Ltd.; Rao Zhihua; Gong Ningrui; (9 pag.)CN105237568; (2017); B;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Downstream synthetic route of 564483-18-7

As the paragraph descriping shows that 564483-18-7 is playing an increasingly important role.

564483-18-7, 2-(Dicyclohexylphosphino)-2′,4′,6′-tri-i-propyl-1,1′-biphenyl is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 8A N-(2-Fluoro-4-nitrophenyl)-1H-pyrrolo[2,3-b]pyridine-4-amine A solution of 500 mg (3.28 mmol) of 4-chloro-1H-pyrrolo[2,3-b]pyridine (Schneller, Stewart, W.; Luo, Jiann-Kuan; J. Org. Chem. 1980, 45, 4045-4048.), 614 mg (3.93 mmol) of 2-fluoro-4-nitroaniline, 150 mg (0.16 mmol) of tris(dibenzylidenacetone)dipalladium and 156 mg (0.33 mmol) of dicyclohexyl(2′,4′,6′-triisopropylbiphenyl-2-yl)phosphine and 996 mg (7.21 mmol) of potassium carbonate in 5.00 ml of degassed tert-butanol is stirred in a sealed pressure vessel at 100 C. for 3 h. After cooling to RT, the mixture is filtered through Celite, the Celite is washed with ethyl acetate and the filtrates are concentrated under reduced pressure. The residue is purified by column chromatography on silica gel (mobile phase: cyclohexane/ethyl acetate 1:1). Yield: 694 mg (78% of theory)

As the paragraph descriping shows that 564483-18-7 is playing an increasingly important role.

Reference£º
Patent; Bayer HealthCare AG; US2008/269268; (2008); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Downstream synthetic route of 17261-28-8

The synthetic route of 17261-28-8 has been constantly updated, and we look forward to future research findings.

17261-28-8, 2-(Diphenylphosphino)benzoic acid is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

After dissolving 3-amino-2-naphthol (0.159 g, 1.0 mmol), 2 (diphenylphosphino) benzoic acid (0.306 g, 1.0 mmol) and paratoluenesulfonicacid (0.190 g, 1.0 mmol) in 30 ml of toluene,The mixture was stirred at 150 under N2 (g) air flow for 15 hours.The product was separated into H2O and toluene layers using H2O,after toluene layer only collected separately dissolved in minimum amount of CHCl3 and the solvent evaporated in evaporator was performed by a silica gel column (Merck 60, 70-230 mesh).The column was prepared using a solution of CHCl3: ethyl acetate in a volume ratio of 5: 1 (v: v),The extracted product was recrystallized with CHCl3 and ethyl acetate in a volume ratio of 5: 2. The recrystallized product was dissolved in 10 ml of CH2Cl2,While stirring, 2 ml of H2O2 (30percent) was slowly added dropwise and the reaction was allowed to proceed overnight.The product was separated into a H2O layer and a CH2Cl2 layer using H2O,The CH2Cl2 layer alone was collected and the solvent was evaporated by evaporator and 2- (2-diphenylphosphoryl) phenyl) naphtho [2,3-d] oxazole (2-PPN),obtained.

The synthetic route of 17261-28-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Inje university industry-academic cooperation foundation; Lee, Bum-Jong; Kim, Ik-Hwan; Kang, Eun-Guk; Kim, Kyung-Hyun; (23 pag.)KR101581821; (2015); B1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate