New learning discoveries about 564483-19-8

The synthetic route of 564483-19-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.564483-19-8,Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine,as a common compound, the synthetic route is as follows.

Step 7: 1-(3-Fluoro-4-(1-(4-methoxybenzyl)-1H-1,2,4-triazol-3-yl)phenyl)-7,8,9,10-tetrahydro-6-oxa-2,10a-diazacycloocta[cd]inden-4-ol A mixture of 4-bromo-1-(3-fluoro-4-(1-(4-methoxybenzyl)-1H-1,2,4-triazol-3-yl)phenyl)-7,8,9,10-tetrahydro-6-oxa-2,10a-diazacycloocta[cd]indene (3.00 g, 5.47 mmol), di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine (1.16 g, 2.73 mmol), tris(dibenzylideneacetone)dipalladium(0) (2.50 g, 2.73 mmol) and potassium hydroxide (770 mg, 13.7 mmol) in dioxane (90 mL) and water (18 mL) was stirred at 100 C. for 4 h. The resulting mixture was evaporated in vacuo. The residue was purified via flash chromatography on silica gel (solvent gradient: 0-10% methanol in DCM) to yield 1.20 g (45%) of the title compound as a gray solid. LCMS: [M+H]+=486., 564483-19-8

The synthetic route of 564483-19-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Genentech, Inc.; Braun, Marie-Gabrielle; Garland, Keira; Hanan, Emily; Purkey, Hans; Staben, Steven T.; Heald, Robert Andrew; Knight, Jamie; Macleod, Calum; Lu, Aijun; Wu, Guosheng; Yeap, Siew Kuen; (183 pag.)US2018/65983; (2018); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Brief introduction of 564483-19-8

564483-19-8 Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine 11618717, achiral-phosphine-ligands compound, is more and more widely used in various fields.

564483-19-8, Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

564483-19-8, (2) A suspension of the compound obtained in (1) (107 g), ethyl 1H-pyrazole-4-carboxylic acid (59.22 g), tripotassium phosphate (112.14 g), 2-di-t-butylphosphino-2′,4′,6′-triisopropyl biphenyl (11.22 g) and tris(dibenzylideneacetone)dipalladium(0) (8.06 g) in t-butyl alcohol (1173 mL) was stirred under nitrogen atmosphere for 4 hours at 90 C. The reaction mixture was added with water and filtered, and the resulting crystals were washed with methanol. The crystals were then dissolved in chloroform, and NH-silica gel (300 mL), silica gel (300 mL) and sodium sulfate (200 g) were added, followed by filtration to remove the insoluble material. The filtrate was concentrated under reduced pressure, the residue was added with methanol. The resulting crystals were corrected by filtration to yield ethyl 1-[7-methoxy-2-(4-methoxybenzyl)-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-1H-pyrazole-4-carboxylate (99.62 g, 69% yield) as colorless crystals. MS (ESI) m/z: 409 [M+H]+.

564483-19-8 Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine 11618717, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Patent; MITSUBISHI TANABE PHARMA CORPORATION; Nakajima, Tatsuo; Goi, Takashi; Kawata, Atsushi; Sugahara, Masakatsu; Yamakoshi, Shuhei; US2015/239889; (2015); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Brief introduction of 564483-19-8

The synthetic route of 564483-19-8 has been constantly updated, and we look forward to future research findings.

564483-19-8, Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

564483-19-8, Example 526 29 mg of 3,5-difluorophenol, 79 mg of tripotassium phosphate, 4.7 mg of 2-(di-tert-butylphosphino)-2′,4′,6′-triisopropylbiphenyl and 6.8 mg of tris(dibenzylideneacetone)dipalladium(0) were added to 1.4 mL of toluene solution containing 70 mg of tert-butyl 2-(benzamido)-4-bromobenzoate at room temperature, and the resulting mixture was heated to reflux under nitrogen atmosphere for 3 hours. After the reaction mixture was cooled to room temperature, ethyl acetate and 10% citric acid aqueous solution were added and insoluble were removed by filtration. The organic layer was separated and dried over anhydrous magnesium sulfate after washed with a saturated sodium chloride aqueous solution, and the solvent was evaporated under reduced pressure. The obtained residue was purified with silica gel column chromatography [PSQ100B (spherical) manufactured by Fuji Silysia Chemical Ltd., eluent; hexane: ethyl acetate = 10:1] to obtain 71 mg of tert-butyl 2-(benzamido)-4-(3,5-difluorophenoxy)benzoate as colorless oil. 1H-NMR (CDCl3) delta: 1.64 (9H, s), 6.56-6.63 (3H, m), 6.73 (1H, dd, J = 8.8, 2.4 Hz), 7.50-7.60 (3H, m), 8.01-8.07 (3H, m), 8.70 (1H, d, J = 2.4 Hz), 12.34 (1H, s).

The synthetic route of 564483-19-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; TOYAMA CHEMICAL CO., LTD.; EP1820795; (2007); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 564483-19-8

As the paragraph descriping shows that 564483-19-8 is playing an increasingly important role.

564483-19-8, Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

564483-19-8, Step 3: 1-(4-(1-(4-Methoxybenzyl)-1H-1,2,4-triazol-3-yl)phenyl)-7,8,9,10-tetrahydro-6-oxa-2,10a-diazacycloocta[cd]inden-4-ol 4-Bromo-1-(4-(1-(4-methoxybenzyl)-1H-1,2,4-triazol-3-yl)phenyl)-7,8,9,10-tetrahydro-6-oxa-2,10a-diazacycloocta[cd]indene (1.3 g, 3.31 mmol), 2-di-t-butylphosphino-2′,4′,6′-tri-i-propyl-1,1′-biphenyl (150 mg, 0.353 mmol), tris(dibenzylideneacetone)dipalladium(0) (170 mg, 0.186 mmol), and potassium hydroxide (270 mg, 4.81 mmol) were suspended in 1,4-dioxane (15 mL) and water (1.5 mL) under an atmosphere of nitrogen and the mixture was heated at 100 C. for 7 h. The reaction system was diluted with water and extracted with DCM. The organic phase was dried over magnesium sulfate and evaporated in vacuo. The crude product was purified via flash chromatography on silica gel (solvent gradient: 0-10% methanol in DCM) to yield 760 mg (67%) of the title compound as a yellow solid. LCMS (ESI): [M+H]+=468.

As the paragraph descriping shows that 564483-19-8 is playing an increasingly important role.

Reference£º
Patent; Genentech, Inc.; Braun, Marie-Gabrielle; Garland, Keira; Hanan, Emily; Purkey, Hans; Staben, Steven T.; Heald, Robert Andrew; Knight, Jamie; Macleod, Calum; Lu, Aijun; Wu, Guosheng; Yeap, Siew Kuen; (183 pag.)US2018/65983; (2018); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Some tips on 564483-19-8

As the paragraph descriping shows that 564483-19-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.564483-19-8,Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine,as a common compound, the synthetic route is as follows.

(2) A suspension of the compound obtained in (1) (89.27 g), ethyl 1H-pyrazole-4-carboxylate (45.16 g), tripotassium phosphate (93.3 g), 2-di-t-butylphosphino-2′,4′,6′-triisopropyl biphenyl (9.33 g) and tris(dibenzylideneacetone)dipalladium(0) (6.7 g) in t-butyl alcohol (900 mL) was stirred for 2 hours at 90 C. under nitrogen atmosphere. The reaction mixture was concentrated under reduced pressure, and the residue was added with chloroform and water. The organic layer was separated, and the aqueous layer was extracted with chloroform. The NH-silica gel (100 mL) and sodium sulfate (100 g) were added to the organic layer, and insoluble materials were removed by filtration. The filtrate was concentrated under reduced pressure, and the residue was added with methanol. The resulting crystals were collected by filtration to yield ethyl 1-[7-methoxy-1-(4-methoxybenzyl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-1H-pyrazole-4-carboxylate (78.94 g, 66% yield) as colorless crystals. MS (APCI) m/z: 409 [M+H]+.

As the paragraph descriping shows that 564483-19-8 is playing an increasingly important role.

Reference£º
Patent; MITSUBISHI TANABE PHARMA CORPORATION; Nakajima, Tatsuo; Goi, Takashi; Kawata, Atsushi; Sugahara, Masakatsu; Yamakoshi, Shuhei; US2015/239889; (2015); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Some tips on 564483-19-8

As the paragraph descriping shows that 564483-19-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.564483-19-8,Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine,as a common compound, the synthetic route is as follows.

Example 221A 6-(tert-butyl)-2-methoxynicotinaldehyde A 500 mL flask was charged with palladium acetate (0.511 g, 2.277 mmol), 2-di-tert-butylphosphino-2′,4′,6′-triisopropylbiphenyl (1.933 g, 4.55 mmol), and cesium carbonate (37.1 g, 114 mmol). After purging the flask with N2, toluene (75 mL) was added, and the mixture was heated in a preheated heating block to 80 C. After 5 minutes, the flask was cooled to room temperature, and 6-(tert-butyl)-2-chloronicotinaldehyde (15 g, 76 mmol) was added as a solution in methanol (75 mL). The mixture was heated at 67 C. for 2 hours, and cooled to room temperature. The reaction was quenched by the addition of saturated aqueous ammonium chloride solution, the mixture was partitioned between water and methyl tert-butyl ether, and the organic phase was washed with brine and dried over sodium sulfate. After filtration, the mixture was concentrated in vacuo, and the residue was purified by silica gel chromatography, eluting with 0 to 10% ethyl acetate/heptanes, to afford the title compound. 1H NMR (501 MHz, CDCl3) delta ppm 10.35 (s, 1H), 8.06 (d, J=7.8 Hz, 1H), 7.06-6.99 (m, 1H), 4.09 (s, 3H), 1.38 (s, 9H); MS (ESI+) m/z 194.1 (M+H)+.

As the paragraph descriping shows that 564483-19-8 is playing an increasingly important role.

Reference£º
Patent; AbbVie S.a.r.l.; Galapagos NV; Altenbach, Robert J.; Bogdan, Andrew; Desroy, Nicolas; Gfesser, Gregory A.; Greszler, Stephen N.; Koenig, John R.; Kym, Philip R.; Liu, Bo; Scanio, Marc J.; Searle, Xenia; Wang, Xueqing; Yeung, Ming C.; Zhao, Gang; (247 pag.)US2018/99932; (2018); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 564483-19-8

As the paragraph descriping shows that 564483-19-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.564483-19-8,Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine,as a common compound, the synthetic route is as follows.

Example 559 31 mg of 3-nitrophenol, 79 mg of tripotassium phosphate, 4.7 mg of 2-(di-tert-butylphosphino)-2′,4′,6′-triisopropylbiphenyl and 6.8 mg of tris(dibenzylideneacetone)dipalladium(0) were added to 1.4 mL of toluene solution containing 70 mg of tert-butyl 2-(benzamido)-4-bromobenzoate at room temperature, and the resulting mixture was heated to reflux under nitrogen atmosphere for 2 hours. After the reaction mixture was cooled to room temperature, 4.7 mg of 2-(di-tert-butylphosphino)-2′,4′,6′-triisopropylbiphenyl and 6.8 mg of tris(dibenzylideneacetone)dipalladium(0) were added and the resulting mixture was heated to reflux under nitrogen atmosphere for 1 hour. After the reaction mixture was cooled to room temperature, ethyl acetate and 10% citric acid aqueous solution were added and insoluble were removed by filtration. The organic layer was separated and dried over anhydrous magnesium sulfate after washed with a saturated sodium chloride aqueous solution, and the solvent was evaporated under reduced pressure. The obtained residue was purified with silica gel column chromatography [PSQ100B (spherical) manufactured by Fuji Silysia Chemical Ltd., eluent; hexane: ethyl acetate = 10:1] to obtain tert-butyl 2-(benzamido)-4-(3-nitrophenoxy)benzoate.

As the paragraph descriping shows that 564483-19-8 is playing an increasingly important role.

Reference£º
Patent; TOYAMA CHEMICAL CO., LTD.; EP1820795; (2007); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate