Brief introduction of 5518-52-5

The synthetic route of 5518-52-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5518-52-5,Tri(furan-2-yl)phosphine,as a common compound, the synthetic route is as follows.

5518-52-5, a 4-Nitrobenzyl (1S,5R,6S)-2-[7-(2-t-butyldimethylsilyloxyethyl)thioimidazo[5,1-b]thiazol-2-yl]-6-((1R)-1-hydroxyethyl)-1-methyl-1-carbapen-2-em-3-carboxylate N,N-Diisopropylethylamine (0.574 ml) was added dropwise to a solution of 791 mg of 4-nitrobenzyl (1R,3R,5R,6S)-6-((1R)-1-hydroxyethyl)-1-methyl-2-oxo-1-carbapenam-3-carboxylate in 20 ml of dry acetonitrile at -30 C. under an argon atmosphere, followed by the dropwise addition of 0.367 ml of trifluoromethanesulfonic anhydride under the same conditions. The mixture was stirred at that temperature for 30 min. Ethyl acetate (40 ml) was then added thereto, and the mixture was washed with semi-saturated brine, a mixed solution composed of semi-saturated brine with a 1 N aqueous hydrochloric acid solution (pH 1.1), a mixed solution composed of semi-saturated brine with a saturated aqueous sodium hydrogencarbonate solution (pH 8.9), and semi-saturated brine in that order, dried over anhydrous magnesium sulfate, and then filtered. The solvent was removed by distillation under the reduced pressure. The residue was dissolved in 10 ml of dry N-methylpyrrolidinone. Tri-2-furylphosphine (11 mg), 104 mg of zinc chloride, 11 mg of tris(dibenzylideneacetone)dipalladium(0), and 1.433 g of 7-(2-t-butyldimethylsilyloxyethyl)thio-2-(tri-n-butylstannyl)imidazo[5,1-b]thiazole were added to the solution. The mixture was stirred at 50 C. under an argon atmosphere for 1.5 hr. Ethyl acetate (30 ml) and 15 ml of a semi-saturated aqueous sodium hydrogencarbonate solution were added to the reaction solution. The mixture was stirred, and the insolubles were removed by filtration. The organic layer was separated from the filtrate, washed with 20 ml of semi-saturated brine three times, and then dried over anhydrous magnesium sulfate. The solvent was removed by distillation under the reduced pressure. The residue was purified by column chromatography on silica gel (dichloromethane:methanol =20:1) to prepare 573 mg of 4-nitrobenzyl (1S,5R,6S)-2-[7-(2-t-butyldimethylsilyloxyethyl)thioimidazo[5,1-b]thiazole-2-yl]-6-((1R)-1-hydroxyethyl)-1-methyl-1-carbapen-2-em-3-carboxylate. NMR (CDCl3) delta: 0.02 (6H, s), 0.86 (9H, s), 1.31 (3H, d, J=7.3 Hz), 1.40 (3H, d, J=6.3 Hz), 2.9-3.0 (2H, m), 3.37 (1H, dd, J1=6.6 Hz, J2=2.8 Hz), 3.4-3.5 (1H, m), 3.75-3.85 (2H, m), 4.25-4.35 (1H, m), 4.38 (1H, dd, J1=9.6 Hz, J22.8 Hz), 5.28 (1H, d, J=13.7 Hz), 5.53 (1H, d, J=13.7 Hz), 7.68 (2H, d, J=8.9 Hz), 8.00 (1H, s), 8.25 (2H, d, J=8.9 Hz), 8.32 (1H, s)

The synthetic route of 5518-52-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Kano, Yuko; Maruyama, Takahisa; Sambongi, Yumiko; Aihara, Kazuhiro; Atsumi, Kunio; Iwamatsu, Kastuyoshi; Ida, Takashi; US2003/27809; (2003); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 5518-52-5

As the paragraph descriping shows that 5518-52-5 is playing an increasingly important role.

5518-52-5, Tri(furan-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5518-52-5, A solution of 10-bromomethyl-10-desmethyl- erythralosamine N-oxide (4) (0.196 g, 0.310 mmol) in NMP (3 ml) was degassed and tris (2-furyl) phosphine (0.018 g, 0.077 mmol) and PD2DBA3. CHC13 (0.010 G, 0.010 mmol) added. The reaction mixture was heated at 50 C for 10 min and more tris (2-furyl) phosphine (0.12 ml, 0.372 mmol) added. The reaction mixture was heated at 80C for 22 h. The product was extracted with ethyl acetate, the organic phase washed with aqueous sodium hydrogen carbonate, brine and dried (MGSOG). The NMP was removed under reduced pressure and the residual material subjected to flash chromatography on silica gel using CH2C12 : MEOH : NH3 90: 4: 1, yield 0.096 g (51%) of a white crystalline solid. HRMS: [M+1] 606.3654. Calc. for C33HS1NO9 : 606.3636.

As the paragraph descriping shows that 5518-52-5 is playing an increasingly important role.

Reference£º
Patent; ALPHARMA APS; COCKBAIN, Julian; WO2004/56843; (2004); A2;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 5518-52-5

As the paragraph descriping shows that 5518-52-5 is playing an increasingly important role.

5518-52-5, Tri(furan-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5518-52-5, (i) Production of 1-(6-Allylnaphthalen-2-yl)-2-methyl-1-(1-trityl-1H-imidazol-4-yl)-1-propanol 1-(6-Bromonaphthalen-2-yl)-2-methyl-1-(1-trityl-1H-imidazol-4-yl)-1-propanol (2.0 g), allyltributyltin (1.26 ml), tris(dibenzylideneacetone)dipalladium (92 mg), tri(2-furyl)phosphine (79 mg) and lithium chloride (432 mg) were dissolved in DMF (20 ml). The solution was stirred at 80 C. for 9 h. The solution was cooled, and diluted with water. The mixture was extracted with ethyl acetate, washed with water and saturated sodium chloride solution, successively, and dried. The solvent was distilled off and the residue was purified by silica gel chromatography (eluent, hexane_THF=6:1) followed by crystallization from isopropyl ether-hexane to give the titled compound (1.57 g) as colorless needles. 1H-NMR (CDCl3) delta: 0.74 (3H, d, J=6.7 Hz), 0.95 (3H, d, J=6.7 Hz), 2.46-2.60 (1H, m), 3.53 (2H, d, J=6.6 Hz), 3.71 (1H, s), 5.07-5.18 (2H, m), 6.04 (1H, ddt, J=3.3, 10.1, 16.9 Hz), 6.80 (1H, d, J=1.4 Hz), 7.10-7.18 (6H, m), 7.27-7.36 (11H, m), 7.54 (1H, dd, J=1.8, 8.6 Hz), 7.57 (1H, s), 7.66-7.78 (2H, m), 7.99 (1H, d, J=1.4 Hz). IR (KBr): 3214, 2969, 1493, 1445, 1015, 907, 816, 748, 700 cm-1.

As the paragraph descriping shows that 5518-52-5 is playing an increasingly important role.

Reference£º
Patent; Takeda Chemical Industries, Ltd.; US6573289; (2003); B1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Downstream synthetic route of 5518-52-5

As the paragraph descriping shows that 5518-52-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5518-52-5,Tri(furan-2-yl)phosphine,as a common compound, the synthetic route is as follows.

5518-52-5, EXAMPLE 26B 4-((cyclohexylmethyl)amino)-3-nitro-5-(2-pyrimidinyl)benzenesulfonamide A solution of Example 26A (270 mg, 0.69 mmol), 2-(tributylstannyl)pyrimidine (305 uL, 0.83 mmol), Pd2(dba)3 (32 mg, 0.034 mmol), and tris-(2-furyl)phosphine (32 mg, 0.10 mmol) in acetonitrile (2 mL) was heated to reflux for 48 hours and concentrated. The concentrate was purified by flash column chromatography on silica gel with 50% ethyl acetate/hexanes to provide the desired product. MS (ESI(+)) m/e 392 (M+H)+.

As the paragraph descriping shows that 5518-52-5 is playing an increasingly important role.

Reference£º
Patent; Augeri, David J.; Baumeister, Steven A.; Bruncko, Milan; Dickman, Daniel A.; Ding, Hong; Dinges, Jurgen; Fesik, Stephen W.; Hajduk, Philip J.; Kunzer, Aaron R.; McClellan, William; Nettesheim, David G.; Oost, Thorsten; Petros, Andrew M.; Rosenberg, Saul H.; Shen, Wang; Thomas, Sheela A.; Wang, Xilu; Wendt, Michael D.; US2002/55631; (2002); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 5518-52-5

5518-52-5 Tri(furan-2-yl)phosphine 521585, achiral-phosphine-ligands compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5518-52-5,Tri(furan-2-yl)phosphine,as a common compound, the synthetic route is as follows.

5518-52-5, EXAMPLE 44A 1,3-dinitro-2-vinylbenzene 1-Chloro-2,6-dinitrobenzene (1.00 g, 4.94 mmoles, purchased from Lancaster) tris(dibenzylideneacetone)dipalladium (0.113 g, 0.123 mmoles), tri-2-furylphosphine (0.229 g, 0.987 mmoles), copper(I) iodide (0.094 g, 0.494 mmoles), and lithium chloride (0.628 g, 14.8 mmoles) in N,N-dimethylformamide (15 mL) were treated with tributylethenylstannane (2.90 mL, 9.87 mmoles). The reaction mixture was degassed with nitrogen, stirred overnight at room temperature and then heated at 80 C. for 4 hours. The reaction mixture was then diluted with ethyl acetate and washed with water and brine. The organic phase was dried with sodium sulfate, filtered and the filtrate concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, 10% ethyl acetate/hexanes) to provide the title compound (0.669 g, 70%). MS (DCI) m/z 194 (M+H)+.

5518-52-5 Tri(furan-2-yl)phosphine 521585, achiral-phosphine-ligands compound, is more and more widely used in various.

Reference£º
Patent; Link, James T.; Sorensen, Bryan K.; Patel, Jyoti R.; Arendsen, David L.; Li, Gaoquan; US2002/156311; (2002); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Analyzing the synthesis route of 5518-52-5

The synthetic route of 5518-52-5 has been constantly updated, and we look forward to future research findings.

5518-52-5, Tri(furan-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 1: 1-[3-(2,4-Difluoro-benzyl)-phenyl]-ethanone L2-A To an oven dried three-necked 100 mL round bottom flask fitted with argon inlet, temperature probe and stir bar was added zinc powder (793 mg, 12.2 mmol), 1,2-dibromoethane (21 muL, 0.24 mmol), and THF (2 mL). The mixture was brought to reflux two times using a heat gun then cooled to 0 C. at which time alpha-bromo-2,4-difluorotoluene (781 muL, 6.10 mL) in THF (3 mL) was added slowly keeping the temperature <3 C. To another 3-necked round bottom flask fitted as above was added bis(dibenzylideneacetone)palladium (Pd(dba)2, 234 mg, 0.41 mmol), tris(2-furyl)phosphine (tfp, 189 mg, 0.81 mmol), and THF (5 mL). The mixture was stirred 10 minutes at room temperature then cooled to 0 C. at which time 3'-iodoacetophenone (562 muL, 4.06 mmol) in THF (1 mL) was added. The flask was flushed with argon and the zinc mixture was pipetted in. After stirring 5 minutes at 0 C., the reaction was left to stir over night at room temperature. The next morning the reaction was quenched with sat. NH4Cl solution and extracted three times with EtOAc. The combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated to a brown oil. The crude product was chromatographed on silica gel using 5% EtOAc/hexane as elutant. Pure product fractions were combined and concentrated to afford L2-A as a yellow oil. Rf=0.22 (5% EtOAc/hexane). 1H NMR (400 MHz, CDCl3) delta7.81 (m, 2H), 7.39 (m, 2H), 7.11 (m, 1H), 6.81 (m, 2H), 4.02 (s, 2H), 2.56 (s, 3H). The synthetic route of 5518-52-5 has been constantly updated, and we look forward to future research findings. Reference£º
Patent; Merck & Co., Inc.; Tularik Inc.; US6380249; (2002); B1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate