Goulioukina, Nataliya S.’s team published research in Advanced Synthesis & Catalysis in 2017 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: rhodium-catalyzed asymmetric formal olefination or cycloaddition of 1,3-dicarbonyl compounds with 1,6-diynes or 1,6-enynes, stereoselective preparation of homoallylic alcohols via Ir-catalyzed stereoselective transfer hydrogenative crotylation of an allylic acetate with alcohols or aldehydesSafety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

In 2017,Goulioukina, Nataliya S.; Shergold, Ilya A.; Rybakov, Victor B.; Beletskaya, Irina P. published 《One-Pot Two-Step Synthesis of Optically Active α-Amino Phosphonates by Palladium-Catalyzed Hydrogenation/Hydrogenolysis of α-Hydrazono Phosphonates》.Advanced Synthesis & Catalysis published the findings.Safety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole The information in the text is summarized as follows:

An efficient and convenient 1-pot procedure for the stereoselective catalytic synthesis of ring-substituted [amino(phenyl)methyl]phosphonates was developed. The enantioselective hydrogenation of easily available diisopropyl (Z)-[aryl(phenylhydrazono)methyl]phosphonates using Pd(II) acetate as a precatalyst, (R)-2,2′-bis(diphenylphosphino)-5,5′-dichloro-6,6′-dimethoxy-1,1′-biphenyl [(R)-Cl-MeO-BIPHEP] as a ligand, and (1S)-(+)-10-camphorsulfonic acid as an activator in a mixture of 2,2,2-trifluoroethanol and CH2Cl2 at ambient temperature gave corresponding [aryl(2-phenylhydrazino)methyl]phosphonates. The subsequent cleavage of the N-N bond was accomplished with H2 after the addition of Pd on C and MeOH into crude reaction mixture to afford the optically active [amino(aryl)methyl]phosphonates. The method is operationally simple and provides an appreciable enantioselectivity up to 98% ee. The results came from multiple reactions, including the reaction of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Safety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: rhodium-catalyzed asymmetric formal olefination or cycloaddition of 1,3-dicarbonyl compounds with 1,6-diynes or 1,6-enynes, stereoselective preparation of homoallylic alcohols via Ir-catalyzed stereoselective transfer hydrogenative crotylation of an allylic acetate with alcohols or aldehydesSafety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Lin, Qianchi’s team published research in Angewandte Chemie, International Edition in 2022 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Product Details of 210169-54-3

Product Details of 210169-54-3In 2022 ,《Catalytic Regio- and Enantioselective Protonation for the Synthesis of Chiral Allenes: Synergistic Effect of the Counterion and Water》 was published in Angewandte Chemie, International Edition. The article was written by Lin, Qianchi; Zheng, Sujuan; Chen, Long; Wu, Jin; Li, Jinzhao; Liu, Peizhi; Dong, Shunxi; Liu, Xiaohua; Peng, Qian; Feng, Xiaoming. The article contains the following contents:

A highly enantioselective tandem Pudovik addition/[1,2]-phospha-Brook rearrangement of α-alkynylketoamides with diarylphosphine oxides was achieved with a N,N’-dioxide/ScIII complex as the catalyst. This protocol features broad substrate scope, high regio- and enantioselectivity, and good functional-group compatibility, providing a straightforward route to various trisubstituted allenes with a diarylphosphinate functionality in good yields with high enantioselectivities (up to 97% yield, 96% ee). Control experiments and theor. calculations revealed that a synergistic effect of the counterion and water was critical for the regio- and enantioselective protonation after [1,2]-phospha-Brook rearrangement. The synthetic utility of this methodol. was demonstrated by the conversion of products into complex bridged polycyclic architectures through intramol. dearomatizing arene/allene cycloaddition The experimental part of the paper was very detailed, including the reaction process of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Product Details of 210169-54-3)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Product Details of 210169-54-3

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Kubota, Koji’s team published research in Journal of the American Chemical Society in 2016 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Recommanded Product: 210169-54-3

Recommanded Product: 210169-54-3In 2016 ,《Enantioselective Synthesis of Chiral Piperidines via the Stepwise Dearomatization/Borylation of Pyridines》 appeared in Journal of the American Chemical Society. The author of the article were Kubota, Koji; Watanabe, Yuta; Hayama, Keiichi; Ito, Hajime. The article conveys some information:

We have developed a novel approach for the synthesis of enantioenriched 3-boryl-tetrahydropyridines via the Cu(I)-catalyzed regio-, diastereo-, and enantioselective protoborylation of 1,2-dihydropyridines, which were obtained by the partial reduction of the pyridine derivatives This dearomatization/enantioselective borylation stepwise strategy provides facile access to chiral piperidines together with the stereospecific transformation of a stereogenic C-B bond from readily available starting materials. Furthermore, the utility of this method is demonstrated for the concise synthesis of the antidepressant drug (-)-paroxetine. A theor. study of the reaction mechanism is also described. After reading the article, we found that the author used (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Recommanded Product: 210169-54-3)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Recommanded Product: 210169-54-3

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Zhang, Jinyu’s team published research in Angewandte Chemie, International Edition in 2021 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.Reference of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Zhang, Jinyu; Yan, Nuo; Ju, Cheng-Wei; Zhao, Dongbing published their research in Angewandte Chemie, International Edition in 2021. The article was titled 《Nickel(0)-Catalyzed Asymmetric Ring Expansion Toward Enantioenriched Silicon-Stereogenic Benzosiloles》.Reference of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole The article contains the following contents:

The development of a straightforward strategy to obtain enantioenriched silicon-stereogenic benzosiloles remains a challenging yet appealing synthesis venture due to their potential future application in chiral electronic and optoelectronic devices. In this context, all of the existing methods rely on Rh-catalyzed systems and are somewhat limited in scope. Herein, we disclose the first Ni0-catalyzed ring expansion process that enables the preparation of benzosiloles possessing tetraorganosilicon stereocenters in excellent yields and enantioselectivities. The presented catalysis strategy is further applied to the asym. synthesis of silicon-stereogenic bis-silicon-bridged π-extended systems. Preliminary studies reveal that such compounds exhibit fluorescence emission, Cotton effects and circularly polarized luminescence (CPL) activity. After reading the article, we found that the author used (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Reference of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.Reference of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Kita, Yusuke’s team published research in Angewandte Chemie, International Edition in 2016 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.Electric Literature of C38H28O4P2

In 2016,Kita, Yusuke; Hida, Shoji; Higashihara, Kenya; Jena, Himanshu Sekhar; Higashida, Kosuke; Mashima, Kazushi published 《Chloride-Bridged Dinuclear Rhodium(III) Complexes Bearing Chiral Diphosphine Ligands: Catalyst Precursors for Asymmetric Hydrogenation of Simple Olefins》.Angewandte Chemie, International Edition published the findings.Electric Literature of C38H28O4P2 The information in the text is summarized as follows:

Efficient rhodium(III) catalysts were developed for asym. hydrogenation of simple olefins. A series of chloride-bridged dinuclear rhodium(III) complexes were synthesized from the rhodium(I) precursor [RhCl(cod)]2, chiral diphosphine ligands, and hydrochloric acid. Complexes from the series acted as efficient catalysts for asym. hydrogenation of (E)-prop-1-ene-1,2-diyldibenzene and its derivatives without any directing groups, in sharp contrast to widely used rhodium(I) catalytic systems that require a directing group for high enantioselectivity. The catalytic system was applied to asym. hydrogenation of allylic alcs., alkenylboranes, and unsaturated cyclic sulfones. Control experiments support the superiority of dinuclear rhodium(III) complexes over typical rhodium(I) catalytic systems. The experimental part of the paper was very detailed, including the reaction process of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Electric Literature of C38H28O4P2)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.Electric Literature of C38H28O4P2

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Ye, Xiang-Yu’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2021 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Safety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Ye, Xiang-Yu; Liang, Zhi-Qin; Jin, Cong; Lang, Qi-Wei; Chen, Gen-Qiang; Zhang, Xumu published an article in 2021. The article was titled 《Design of oxa-spirocyclic PHOX ligands for the asymmetric synthesis of lorcaserin via iridium-catalyzed asymmetric hydrogenation》, and you may find the article in Chemical Communications (Cambridge, United Kingdom).Safety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole The information in the text is summarized as follows:

Phosphine-oxazoline (PHOX) ligands are a very important class of privileged ligands in asym. catalysis. A series of highly rigid oxa-spiro phosphine-oxazoline (O-SIPHOX) ligands based on O-SPINOL was synthesized efficiently, and their iridium complexes were synthesized by coordination of the O-SIPHOX ligands to [Ir(cod)Cl]2 in the presence of sodium tetrakis-3,5-bis(trifluoromethyl)phenylborate (NaBArF). The cationic iridium complexes showed high reactivity and excellent enantioselectivity in the asym. hydrogenation of 1-methylene-tetrahydro-benzo[d]azepin-2-ones (up to 99% yield and up to 99% ee). A key intermediate of the anti-obesity drug lorcaserin could be efficiently synthesized using this protocol. The experimental process involved the reaction of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Safety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Safety of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Bernardo, Olaya’s team published research in Angewandte Chemie, International Edition in 2021 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Category: chiral-phosphine-ligands

Bernardo, Olaya; Gonzalez-Pelayo, Silvia; Fernandez, Israel; Lopez, Luis A. published an article in 2021. The article was titled 《Gold-Catalyzed Reaction of Propargyl Esters and Alkynylsilanes: Synthesis of Vinylallene Derivatives through a Twofold 1,2-Rearrangement》, and you may find the article in Angewandte Chemie, International Edition.Category: chiral-phosphine-ligands The information in the text is summarized as follows:

The reaction of propargyl esters with alkynylsilanes under gold catalysis provides vinylallene derivatives through consecutive [1,2]-acyloxy/[1,2]-silyl rearrangements. Good yields, full atom-economy, broad substrate scope, easy scale-up and low catalyst loadings are salient features of this novel transformation. D. Functional Theory (DFT) calculations suggest a reaction mechanism involving initial [1,2]-acyloxy rearrangement to generate a gold vinylcarbene intermediate which upon regioselective attack of the alkynylsilane affords a vinyl cation which undergoes a type II-dyotropic rearrangement involving the silyl group and the metal fragment. Preliminary results on the enantioselective version of this transformation are also disclosed. The results came from multiple reactions, including the reaction of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Category: chiral-phosphine-ligands)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Category: chiral-phosphine-ligands

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Zhu, Jian-Xiang’s team published research in Angewandte Chemie, International Edition in 2022 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.COA of Formula: C38H28O4P2

In 2022,Zhu, Jian-Xiang; Chen, Zhi-Chao; Du, Wei; Chen, Ying-Chun published an article in Angewandte Chemie, International Edition. The title of the article was 《Asymmetric Auto-Tandem Palladium Catalysis for 2,4-Dienyl Carbonates: Ligand-Controlled Divergent Synthesis》.COA of Formula: C38H28O4P2 The author mentioned the following in the article:

Herein a palladium-catalyzed auto-tandem reaction between 2,4-dienyl carbonates and o-TsNH arylimines or trifluoroacetophenones was presented, that proceeded through a consecutive N-allylation, vinylogous addition, π-σ-π isomerization, and another N-allylation sequence. Importantly, switchable diastereodivergent synthesis could be achieved by tuning the chiral bisphosphine ligands, which led to the construction of a broad spectrum of fused tetrahydroquinoline architectures such as I [R1 = H, 4-Me, 5-Cl, etc.; R2 = Ms, Ts, SO2(2-thienyl); R3 = Me, Ph, 2-furyl, etc.] with moderate to excellent enantioselectivity. Ligand control even enabled effective access to regiodivergent azetidines or chemodivergent β-H elimination with fair enantioselectivity, further showing the versatility of the current auto-tandem catalysis.(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3COA of Formula: C38H28O4P2) was used in this study.

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.COA of Formula: C38H28O4P2

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Pavlovic, Ljiljana’s team published research in European Journal of Organic Chemistry in 2021 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Application In Synthesis of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Application In Synthesis of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxoleIn 2021 ,《Computational and Experimental Insights into Asymmetric Rh-Catalyzed Hydrocarboxylation with CO2》 was published in European Journal of Organic Chemistry. The article was written by Pavlovic, Ljiljana; Pettersen, Martin; Gevorgyan, Ashot; Vaitla, Janakiram; Bayer, Annette; Hopmann, Kathrin H.. The article contains the following contents:

The asym. Rh-catalyzed hydrocarboxylation of α,β-unsaturated carbonyl compounds was originally developed by Mikami and co-workers but gives only moderate enantiomeric excesses. In order to understand the factors controlling the enantioselectivity and to propose novel ligands for this reaction, we have used computational and exptl. methods to study the Rh-catalyzed hydrocarboxylation with different bidentate ligands. The anal. of the C-CO2 bond formation transition states with DFT methods shows a preference for outer-sphere CO2 insertion, where CO2 can undergo a backside or frontside reaction with the nucleophile. The two ligands that prefer a frontside reaction, StackPhos and tBu-BOX, display an intriguing stacking interaction between CO2 and an N-heterocyclic ring of the ligand (imidazole or oxazoline). Our exptl. results support the computationally predicted low enantiomeric excesses and highlight the difficulty in developing a highly selective version of this reaction. The experimental part of the paper was very detailed, including the reaction process of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Application In Synthesis of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) is a chelating ligand used to prepare coordination complex catalysts, such as its use in Pd catalysts for the enantioselective synthesis of spiro- or benzofused hetereocycles with exocyclic olefins via enantioselective intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles and furans.Application In Synthesis of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis

Nogami, Juntaro’s team published research in Journal of the American Chemical Society in 2020 | CAS: 210169-54-3

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.Computed Properties of C38H28O4P2

《Enantioselective Synthesis of Planar Chiral Zigzag-Type Cyclophenylene Belts by Rhodium-Catalyzed Alkyne Cyclotrimerization》 was written by Nogami, Juntaro; Tanaka, Yusuke; Sugiyama, Haruki; Uekusa, Hidehiro; Muranaka, Atsuya; Uchiyama, Masanobu; Tanaka, Ken. Computed Properties of C38H28O4P2This research focused onzigzag cyclophenylene belt enantioselective preparation; rhodium catalyst enantioselective cyclotrimerization heptynyl oxypropynylphenoxyphenylene oligomer; mol crystal structure racemic zigzag cyclophenylene belt; mechanism enantioselectivity cyclotrimerization heptynyl oxypropynylphenoxyphenylene; ring strain calculated zigzag cyclophenylene belt; fluorescence UV visible absorption zigzag cyclophenylene belt; dissymetry factor ECD CPL nonracemic zigzag cyclophenylene belt. The article conveys some information:

Planar chiral zigzag-type [8] and [12]cyclophenylene belts were prepared enantioselectively by rhodium-catalyzed enantioselective intramol. sequential cyclotrimerizations of a cyclic [oxypropynylbis(heptynyloxy)phenoxybis(heptynyl)phenylene] dimer and trimer. The observed enantioselectivity likely arose from the regioselective formation of a rhodacyclic intermediate from an unsym. triyne unit. The structure of the racemic zigzag [8]cyclophenylene belt was determined by X-ray crystallog.; the homochiral belts mesh with one another to form columns in the solid state, with columns of alternating chiralities. The ring strain of the zigzag [8]cyclophenylene belt was smaller than that of the corresponding armchair-type cycloparaphenylene despite its smaller ring size because of the presence of strain-relieving m-terphenyl moieties. The effect of the number of the benzene rings in the zigzag cyclophenylene belts on their UV/visible absorption and fluorescence was small because of the interruption of conjugation by the m-phenylene moieties, but the effect of bending on the absorption and emission peaks and on the absolute fluorescence quantum yield was significant. Modest anisotropy dissymmetry factors of the electronic CD and CPL spectra were observed for the zigzag [8]cyclophenylene belt. The results came from multiple reactions, including the reaction of (S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3Computed Properties of C38H28O4P2)

(S)-5,5′-Bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole(cas: 210169-54-3) may be used for: regio- and stereoselective preparation of axially chiral arylnaphthalene derivatives via rhodium-catalyzed [2+2+2] cycloaddition of diynes with naphthalenepropynoic acid derivatives or diastereo- and enantioselective hydrogenation of α-amino-β-keto ester hydrochlorides catalyzed by an iridium complex.Computed Properties of C38H28O4P2

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis