Oonishi, Yoshihiro’s team published research in Angewandte Chemie, International Edition in 2019 | 139139-86-9

Angewandte Chemie, International Editionpublished new progress about Alcohols, unsaturated Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Recommanded Product: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl.

Oonishi, Yoshihiro; Masusaki, Shuichi; Sakamoto, Shunki; Sato, Yoshihiro published the artcile< Rhodium(I)-Catalyzed Enantioselective Cyclization of Enynes by Intramolecular Cleavage of the Rh-C Bond by a Tethered Hydroxy Group>, Recommanded Product: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl, the main research area is acyl heterocyclic compound enantioselective preparation; enynol preparation enantioselective cyclization rhodium catalyst; cyclization; enantioselectivity; enyne; rhodium; σ-bond metathesis.

Rhodium(I)-catalyzed enantioselective intramol. cyclization of enynes having a hydroxy group in the tether was investigated, and various cyclic compounds possessing a chiral quaternary carbon center were obtained in high yields with high ees. In this cyclization, a Rh-C(sp2) bond in the rhodacyclopentene intermediate, which was formed by enantioselective oxidative cycloaddition of enynes to a chiral rhodium(I) complex, was intramolecularly cleaved by σ-bond metathesis of a tethered O-H bond in the substrate. Furthermore, it was found that the cyclic compounds were obtained with high ees even when the starting materials having a racemic secondary alc. moiety were used in this reaction.

Angewandte Chemie, International Editionpublished new progress about Alcohols, unsaturated Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Recommanded Product: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Tanaka, Ken’s team published research in Tetrahedron in 2008-06-30 | 139139-86-9

Tetrahedronpublished new progress about Alkadiynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Recommanded Product: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl.

Tanaka, Ken; Takahashi, Maho; Imase, Hidetomo; Osaka, Takuya; Noguchi, Keiichi; Hirano, Masao published the artcile< Enantioselective synthesis of α,α-disubstituted α-amino acids by Rh-catalyzed [2+2+2] cycloaddition of 1,6-diynes with protected dehydroamino acid>, Recommanded Product: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl, the main research area is enantioselective synthesis amino acid rhodium BINAP catalyst cycloaddition diyne; dehydroamino acid cycloaddition diyne catalyst rhodium BINAP.

We have determined that a cationic rhodium(I)/BINAP complex catalyzes a [2+2+2] cycloaddition of 1,6-diynes with protected dehydroamino acids, leading to protected α-amino acids bearing a quaternary carbon center in high yield with high enantioselectivity. Thus, aminoisoindolecarboxylate I (Ts = tosyl) was obtained in 96% yield and 97 ee by cycloaddition reaction of TsN(CH2CCMe)2 with AcNHC(:CH2)CO2Me using Rh(cod)2BF4/(R)-BINAP.

Tetrahedronpublished new progress about Alkadiynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Recommanded Product: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Senda, Taichi’s team published research in Journal of Organic Chemistry in 2001-10-19 | 139139-86-9

Journal of Organic Chemistrypublished new progress about Addition reaction catalysts, stereoselective. 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Formula: C44H40P2.

Senda, Taichi; Ogasawara, Masamichi; Hayashi, Tamio published the artcile< Rhodium-Catalyzed Asymmetric 1,4-Addition of Organoboron Reagents to 5,6-Dihydro-2(1H)-pyridinones. Asymmetric Synthesis of 4-Aryl-2-piperidinones>, Formula: C44H40P2, the main research area is asym synthesis arylpiperidinone; stereoselective addition organoboron pyridinone; paroxetine intermediate stereoselective preparation.

Catalytic asym. synthesis of 4-aryl-2-piperidinones was realized by asym. 1,4-addition of arylboron reagents to 5,6-dihydro-2(1H)-pyridinones in the presence of a chiral bisphosphine-rhodium catalyst. In the reaction introducing the 4-fluorophenyl group, the use of 4-fluorophenylboroxine and 1 equiv (to boron) of water at 40°C gave the highest yield of the arylation product with high enantioselectivity (98% ee). The (R)-4-(4-fluorophenyl)-2-piperidinone obtained is a key intermediate for the synthesis of (-)-Paroxetine.

Journal of Organic Chemistrypublished new progress about Addition reaction catalysts, stereoselective. 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Formula: C44H40P2.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Brusoe, Andrew T’s team published research in Angewandte Chemie, International Edition in 2011 | 139139-86-9

Angewandte Chemie, International Editionpublished new progress about Allenes Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, COA of Formula: C44H40P2.

Brusoe, Andrew T.; Alexanian, Erik J. published the artcile< Rhodium(I)-Catalyzed Ene-Allene-Allene [2+2+2] Cycloadditions: Stereoselective Synthesis of Complex trans-Fused Carbocycles>, COA of Formula: C44H40P2, the main research area is eneallene allene rhodium catalyzed cycloaddition; hydrindane decalin stereoselective preparation four contiguous stereocenters; fused carbocycle stereoselective preparation.

The rhodium-catalyzed [2+2+2] cycloaddition of ene-allenes with allenes was utilized for the construction of a variety of trans-fused hydrindanes and decalins in a highly convergent manner, with three σ bonds, two rings, and up to four contiguous stereocenters generated in a regio- and stereoselective fashion.

Angewandte Chemie, International Editionpublished new progress about Allenes Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, COA of Formula: C44H40P2.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Tanaka, Ken’s team published research in Synlett in 2007-06-01 | 139139-86-9

Synlettpublished new progress about Alkadiynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Application of C44H40P2.

Tanaka, Ken; Nishida, Goushi; Sagae, Hiromi; Hirano, Masao published the artcile< Enantioselective synthesis of C2-symmetric dimethyl cyclohexadienedicarboxylates through cationic rhodium(I)/modified-BINAP-catalyzed [2+2+2] cycloadditions>, Application of C44H40P2, the main research area is enediyne enantioselective intramol cycloaddition rhodium BINAP catalyst; diyne fumarate enantioselective cycloaddition rhodium BINAP catalyst; tricyclic cyclohexadienedicarboxylate asym synthesis; bicyclic cyclohexadienedicarboxylate asym synthesis.

A cationic rhodium(I)/(S)-Tol-BINAP complex was employed to catalyze an enantioselective intramol. [2+2+2] cycloaddition of a trans enediyne leading to a C2-sym. tricyclic di-Me cyclohexadienedicarboxylate in 95% yield with 59% ee. A cationic rhodium(I)/(R)-H8-BINAP complex was employed to catalyze an intermol. [2+2+2] cycloaddition of 1,6-diynes with di-Me fumarate leading to C2-sym. bicyclic di-Me cyclohexadienedicarboxylates in 35-96% yields with 82-98% ee.

Synlettpublished new progress about Alkadiynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Application of C44H40P2.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate