Oonishi, Yoshihiro’s team published research in Asian Journal of Organic Chemistry in 2015 | 139139-86-9

Asian Journal of Organic Chemistry published new progress about Alkadienones Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Product Details of C44H40P2.

Oonishi, Yoshihiro; Saito, Akira; Sato, Yoshihiro published the artcile< Rhodium(I)-Catalyzed Intermolecular [2+2+2] Cycloaddition of Allenyl Aldehydes with Alkynes and Related Cyclization>, Product Details of C44H40P2, the main research area is polysubstituted dihydropyran enantioselective preparation; internal alkyne allenyl aldehyde rhodium catalyst regioselective cycloaddition; dienyl ketone preparation; terminal alkyne allenyl aldehyde rhodium catalyst cycloaddition.

Rhodium(I)-catalyzed cyclization of allenyl aldehydes with various alkynes was investigated. The intermol. [2+2+2] cycloaddition reaction of allenyl aldehyde with internal alkynes that have both an electron-rich aromatic ring and an electron-withdrawing group at the terminus afforded polysubstituted dihydropyran for e.g., I in good yields with good to high regio- and enantioselectivity. While the reactions of terminal alkynes with allenyl aldehyde gave dienyl ketones instead of [2+2+2] cycloaddition products for e.g., II in good yields.

Asian Journal of Organic Chemistry published new progress about Alkadienones Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Product Details of C44H40P2.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Desfeux, Camille’s team published research in Organic Letters in 2020-11-06 | 139139-86-9

Organic Letters published new progress about Borylation (anti-Markovnikov enantioselective). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Name: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl.

Desfeux, Camille; Besnard, Celine; Mazet, Clement published the artcile< [n]Dendralenes as a Platform for Selective Catalysis: Ligand-Controlled Cu-Catalyzed Chemo-, Regio-, and Enantioselective Borylations>, Name: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl, the main research area is phosphanamine copper catalyzed antiMarkovnikov enantioselective borylation substituted dendralene; dendralene preparation enantioselective borylation; crystal structure benzoyl dendralene derivative; mol structure benzoyl dendralene derivative.

The authors report the development of two complementary methods for the Cu-catalyzed anti-Markovnikov borylation of one specific olefin in 2-substituted [n]dendralenes (n = 3-6). The 1st protocol operates with a bisphosphine ligand and occurs with high regio- and chemoselectivity for the terminal double bond, independently of the number of cross-conjugated alkenes. The use of a chiral phosphanamine ligand enables the highly chemo-, regio-, and enantioselective borylation of the alkene cross-conjugated with the terminal olefin in [n]dendralenes.

Organic Letters published new progress about Borylation (anti-Markovnikov enantioselective). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Name: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Nishida, Goushi’s team published research in Angewandte Chemie, International Edition in 2008 | 139139-86-9

Angewandte Chemie, International Edition published new progress about Alkadiynes Role: RCT (Reactant), RACT (Reactant or Reagent) (1,6-diynes). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Category: chiral-phosphine-ligands.

Nishida, Goushi; Noguchi, Keiichi; Hirano, Masao; Tanaka, Ken published the artcile< Enantioselective synthesis of P-stereogenic alkynylphosphine oxides by Rh-catalyzed [2+2+2] cycloaddition>, Category: chiral-phosphine-ligands, the main research area is alkynyl phosphine oxide preparation stereoselective structure; cycloaddition dialkynyl phosphine oxide diyne rhodium binap complex catalyst; crystal mol structure stereogenic phosphorus alkynyl phosphine oxide preparation.

An enantioselective synthesis of P-stereogenic alkynylphosphine oxides through a cationic rhodium(l)/modified-binap complex catalyzed [2+2+2] cycloaddition of sym. dialkynylphosphine oxides with 1,6-diynes was developed (binap = 2,2′-bis(diphenylphosphinyl)-1,1′-binaphthyl, Z = CH2, O, or N-sulfonamide). Furthermore, this method permits the synthesis of a C2-sym. P-stereogenic bis(alkynylphosphine oxide). A crystal structure of one product was determined along with the absolute configuration of the phosphorus center.

Angewandte Chemie, International Edition published new progress about Alkadiynes Role: RCT (Reactant), RACT (Reactant or Reagent) (1,6-diynes). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Category: chiral-phosphine-ligands.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Fernandez, Marti’s team published research in Advanced Synthesis & Catalysis in 2016 | 139139-86-9

Advanced Synthesis & Catalysis published new progress about Alkadiynes Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, COA of Formula: C44H40P2.

Fernandez, Marti; Parera, Magda; Parella, Teodor; Lledo, Agusti; Le Bras, Jean; Muzart, Jacques; Pla-Quintana, Anna; Roglans, Anna published the artcile< Rhodium-Catalyzed [2+2+2] Cycloadditions of Diynes with Morita-Baylis-Hillman Adducts: A Stereoselective Entry to Densely Functionalized Cyclohexadiene Scaffolds>, COA of Formula: C44H40P2, the main research area is cyclohexadiene scaffold enantioselective preparation; diyne Morita Baylis Hillman adduct enantioselective cycloaddition rhodium catalyst.

A rhodium-catalyzed asym. synthesis of 5,5-disubstituted cyclohexa-1,3-dienes has been achieved by [2+2+2] cycloaddition reactions between diynes and Morita-Baylis-Hillman (M-B-H) adducts as unsaturated substrates. Products containing two adjacent chiral centers (quaternary and tertiary, resp.) were obtained with complete diastereoselectivity and high enantioselectivity (84-97%) through a kinetic resolution of the M-B-H adduct. Furthermore, these highly substituted cyclohexadienes reacted with dienophiles to afford the corresponding Diels-Alder cycloadducts in good yields.

Advanced Synthesis & Catalysis published new progress about Alkadiynes Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, COA of Formula: C44H40P2.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Wang, Duo-Sheng’s team published research in Chemical Science in 2011-04-30 | 139139-86-9

Chemical Science published new progress about Diastereoselective synthesis. 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Computed Properties of 139139-86-9.

Wang, Duo-Sheng; Tang, Jie; Zhou, Yong-Gui; Chen, Mu-Wang; Yu, Chang-Bin; Duan, Ying; Jiang, Guo-Fang published the artcile< Dehydration triggered asymmetric hydrogenation of 3-(α-hydroxyalkyl)indoles>, Computed Properties of 139139-86-9, the main research area is stereoselective hydrogenation hydroxyalkyl indole reactant alkylindoline preparation; palladium catalyzed asym hydrogenation hydroxyalkyl indole reactant; hydroxyalkyl indole preparation formylation Grignard addition indole reactant.

Highly enantioselective hydrogenation of 3-(α-hydroxyalkyl)indoles promoted by a Bronsted acid for dehydration to form a vinylogous iminium intermediate in situ was developed with Pd(OCOCF3)2/(R)-H8-BINAP as catalyst with up to 97% ee. This methodol. provides an efficient and rapid access to chiral 2,3-disubstituted indolines, e.g. I (R1 = 5-F, 7-Me, R2 = H; R1 = H, R2 = 2-Me, 4-MeO, 4-F).

Chemical Science published new progress about Diastereoselective synthesis. 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Computed Properties of 139139-86-9.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Tanaka, Ken’s team published research in Synlett in 2007-06-01 | 139139-86-9

Synlett published new progress about Alkadiynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, SDS of cas: 139139-86-9.

Tanaka, Ken; Nishida, Goushi; Sagae, Hiromi; Hirano, Masao published the artcile< Enantioselective synthesis of C2-symmetric dimethyl cyclohexadienedicarboxylates through cationic rhodium(I)/modified-BINAP-catalyzed [2+2+2] cycloadditions>, SDS of cas: 139139-86-9, the main research area is enediyne enantioselective intramol cycloaddition rhodium BINAP catalyst; diyne fumarate enantioselective cycloaddition rhodium BINAP catalyst; tricyclic cyclohexadienedicarboxylate asym synthesis; bicyclic cyclohexadienedicarboxylate asym synthesis.

A cationic rhodium(I)/(S)-Tol-BINAP complex was employed to catalyze an enantioselective intramol. [2+2+2] cycloaddition of a trans enediyne leading to a C2-sym. tricyclic di-Me cyclohexadienedicarboxylate in 95% yield with 59% ee. A cationic rhodium(I)/(R)-H8-BINAP complex was employed to catalyze an intermol. [2+2+2] cycloaddition of 1,6-diynes with di-Me fumarate leading to C2-sym. bicyclic di-Me cyclohexadienedicarboxylates in 35-96% yields with 82-98% ee.

Synlett published new progress about Alkadiynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, SDS of cas: 139139-86-9.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Sagae, Hiromi’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2008-08-28 | 139139-86-9

Chemical Communications (Cambridge, United Kingdom)published new progress about Alkenynes Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation) (dienynes). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Recommanded Product: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl.

Sagae, Hiromi; Noguchi, Keiichi; Hirano, Masao; Tanaka, Ken published the artcile< Rhodium-catalyzed enantio- and diastereoselective intramolecular [2 + 2 + 2] cycloaddition of unsymmetrical dienynes>, Recommanded Product: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl, the main research area is dienyne rhodium catalyst intramol cycloaddition; polycyclic cyclohexene derivative stereoselective preparation crystal structure; benzopyran derivative stereoselective preparation; biscyclooctadienerhodium tetrafluoroborate octahydrobinap asym cycloaddition catalyst.

A cationic rhodium(I)/(R)-H8-BINAP or (R)-Segphos complex catalyzes an intramol. [2 + 2 + 2] cycloaddition of unsym. dienynes, leading to fused tri- and tetracyclic cyclohexenes bearing two tertiary or quaternary carbon centers in high yields with high enantio- and diastereoselectivity.

Chemical Communications (Cambridge, United Kingdom)published new progress about Alkenynes Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation) (dienynes). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Recommanded Product: (R)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Yang, Bo’s team published research in Angewandte Chemie, International Edition in 2020-11-23 | 139139-86-9

Angewandte Chemie, International Editionpublished new progress about Crystal structure. 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Formula: C44H40P2.

Yang, Bo; Yang, Wu; Guo, Yonghong; You, Lijun; He, Chuan published the artcile< Enantioselective Silylation of Aliphatic C-H Bonds for the Synthesis of Silicon-Stereogenic Dihydrobenzosiloles>, Formula: C44H40P2, the main research area is rhodium catalyzed enantioselective silylation cyclization styrene derivative arylsilane; silicon stereogenic dihydrobenzosilole containing dehydrocholesterol preparation crystal structure; mol structure silicon stereogenic dihydrobenzosilole containing dehydrocholesterol; C(sp3)−H silylation; asymmetric catalysis; dihydrobenzosiloles; hydrosilylation; silanes.

A Rh(I)-catalyzed enantioselective silylation of aliphatic C-H bonds for the synthesis of Si-stereogenic dihydrobenzosiloles is demonstrated. This reaction involves a highly enantioselective intramol. C(sp3)-H silylation of dihydrosilanes, followed by a stereospecific intermol. alkene hydrosilylation leading to the asym. tetrasubstituted silanes. A wide range of dihydrosilanes and alkenes displaying various functional groups are compatible with this process, giving access to a variety of highly functionalized Si-stereogenic dihydrobenzosiloles in good to excellent yields and enantioselectivities.

Angewandte Chemie, International Editionpublished new progress about Crystal structure. 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Formula: C44H40P2.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Shintani, Ryo’s team published research in Journal of the American Chemical Society in 2006-05-03 | 139139-86-9

Journal of the American Chemical Societypublished new progress about Boronic acids Role: RCT (Reactant), RACT (Reactant or Reagent) (arylboronic acids). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Electric Literature of 139139-86-9.

Shintani, Ryo; Duan, Wei-Liang; Hayashi, Tamio published the artcile< Rhodium-Catalyzed Asymmetric Construction of Quaternary Carbon Stereocenters: Ligand-Dependent Regiocontrol in the 1,4-Addition to Substituted Maleimides>, Electric Literature of 139139-86-9, the main research area is rhodium complex asym addition reaction regioselectivity enantioselectivity; arylboronic acid maleimide asym addition reaction.

A rhodium-catalyzed asym. 1,4-addition of arylboronic acids of formula ArB(OH)2 (Ar = Ph, 2-naphthyl, 2-methylphenyl, 4-methoxyphenyl, 4-fluorophenyl) to substituted maleimides (I; R = Et, Me, i-Pr) has been described. The regioselectivity in this reaction is controlled by the choice of ligand (dienes or bisphosphines), and 1,4-adducts with a quaternary stereocenter (II; Ar, R = same as above) can be obtained with high regio- and enantioselectivity over 1,4-adducts with a secondary carbon center (III; Ar, R = same as above) by the use of (R)-H8-BINAP (IV). For example, I (R = Et), 3.0 equiv phenylboronic acid, 2.5 mol% divinylrhodium chloride dimer, IV (Rh/ligand = 1:1), and 0.5 equiv KOH were stirred in a 10:1 mixture of dioxane and water at 50° for 3 h to give a 87:13 mixture of II (Ar = Ph, R = Et) and III (Ar = Ph, R = Et) in 98% yield.

Journal of the American Chemical Societypublished new progress about Boronic acids Role: RCT (Reactant), RACT (Reactant or Reagent) (arylboronic acids). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Electric Literature of 139139-86-9.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Masutomi, Koji’s team published research in Angewandte Chemie, International Edition in 2012 | 139139-86-9

Angewandte Chemie, International Editionpublished new progress about Alkenynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Synthetic Route of 139139-86-9.

Masutomi, Koji; Sakiyama, Norifumi; Noguchi, Keiichi; Tanaka, Ken published the artcile< Rhodium-Catalyzed Regio-, Diastereo-, and Enantioselective [2+2+2] Cycloaddition of 1,6-Enynes with Acrylamides>, Synthetic Route of 139139-86-9, the main research area is enyne enantioselective diastereoselective regioselective cycloaddition acrylamide rhodium BINAP catalyst; isoindole indene isobenzofuran amide hexahydro enantioselective diastereoselective synthesis.

A variety of partially hydrogenated isoindoles I [X = NTs; R1 = H, Me, Ph; R2 = H, Me, Et, Ph; R3 = R4 = Me, n-Bu, Ph; R3 = Me, R4 = MeO, Ph; R3R4 = (CH2)4] and their carbocyclic I [X = (MeO2C)2C; R1 = R2 = R3 = Me; R4 = Ph] and oxacyclic analogs I (X = O; R1 = n-pentyl; R2 = R3 = Me; R4 = Ph) was synthesized by rhodium(I)/(R)-H8-BINAP-catalyzed asym. [2 + 2 + 2] cycloaddition of 1,6-enynes II with acrylamides H2C:CHC(O)NR3R4. In this catalysis, regioselective insertion of acrylamide into a rhodacyclopentene intermediate and the coordination of the carbonyl group of acrylamide to the cationic rhodium center suppress the undesired β-hydride elimination.

Angewandte Chemie, International Editionpublished new progress about Alkenynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Synthetic Route of 139139-86-9.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate