Siu, Eulalia’s team published research in Biotechnology Progress in 2007-02-28 | 606-68-8

Biotechnology Progress published new progress about Electrochemical reduction. 606-68-8 belongs to class chiral-phosphine-ligands, and the molecular formula is C21H27N7Na2O14P2, Reference of 606-68-8.

Siu, Eulalia; Won, Keehoon; Park, Chan Beum published the artcile< Electrochemical Regeneration of NADH Using Conductive Vanadia-Silica Xerogels>, Reference of 606-68-8, the main research area is electorchem NADH regeneration vanadia silica xerogel.

Elec. conductive sol-gel matrixes have been first introduced in order to enhance the efficiency of electrochem. NADH regeneration systems for biocatalysis. Vanadia-silica mixed gels as conductive sol-gels were synthesized using vanadium (V) oxytripropoxide (VOTP) and tetra-Me orthosilicate (TMOS) as precursors. Direct electrochem. reductions of NAD+ were carried out in the presence of vanadia-silica xerogels using unmodified platinum electrodes. Vanadia-silica gels from higher ratios of VOTP to TMOS could effectively improve electrochem. generations of NADH from NAD+. Direct electrochem. regenerations of NADH were coupled to the synthesis of L-glutamate from α-ketoglutarate catalyzed by glutamate dehydrogenases (GDH). In this case, vanadia-silica gels were used as matrixes for enzyme encapsulation, as opposed to serving as additives. When GDH were entrapped in “”nonconductive”” silica gels, synthesized using only TMOS, in the control experiment, the initial supply of NADH exhausted quickly and a final conversion of 30% was obtained. However, the use of conductive vanadia-silica gels with encapsulated GDH resulted in complete conversion of α-ketoglutarate to L-glutamate. A turnover number of a cofactor was also enhanced 3-fold by the application of conductive vanadia-silica gels.

Biotechnology Progress published new progress about Electrochemical reduction. 606-68-8 belongs to class chiral-phosphine-ligands, and the molecular formula is C21H27N7Na2O14P2, Reference of 606-68-8.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate