Discovery of 1824-94-8

As far as I know, this compound(1824-94-8)Formula: C7H14O6 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Formula: C7H14O6. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: (2R,3R,4S,5R,6R)-2-(Hydroxymethyl)-6-methoxytetrahydro-2H-pyran-3,4,5-triol, is researched, Molecular C7H14O6, CAS is 1824-94-8, about Differential physiological, transcriptomic and metabolomic responses of Arabidopsis leaves under prolonged warming and heat shock. Author is Wang, Li; Ma, Kai-Biao; Lu, Zhao-Geng; Ren, Shi-Xiong; Jiang, Hui-Ru; Cui, Jia-Wen; Chen, Gang; Teng, Nian-Jun; Lam, Hon-Ming; Jin, Biao.

Abstract: Background: Elevated temperature as a result of global climate warming, either in form of sudden heatwave (heat shock) or prolonged warming, has profound effects on the growth and development of plants. However, how plants differentially respond to these two forms of elevated temperatures is largely unknown. Here we have therefore performed a comprehensive comparison of multi-level responses of Arabidopsis leaves to heat shock and prolonged warming. Results: The plant responded to prolonged warming through decreased stomatal conductance, and to heat shock by increased transpiration. In carbon metabolism, the glycolysis pathway was enhanced while the tricarboxylic acid (TCA) cycle was inhibited under prolonged warming, and heat shock significantly limited the conversion of pyruvate into acetyl CoA. The cellular concentration of hydrogen peroxide (H2O2) and the activities of antioxidant enzymes were increased under both conditions but exhibited a higher induction under heat shock. Interestingly, the transcription factors, class A1 heat shock factors (HSFA1s) and dehydration responsive element-binding proteins (DREBs), were up-regulated under heat shock, whereas with prolonged warming, other abiotic stress response pathways, especially basic leucine zipper factors (bZIPs) were up-regulated instead. Conclusions: Our findings reveal that Arabidopsis exhibits different response patterns under heat shock vs. prolonged warming, and plants employ distinctly different response strategies to combat these two types of thermal stress.

As far as I know, this compound(1824-94-8)Formula: C7H14O6 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate