Featherston, Aaron L. et al. published their research in Science (Washington, DC, United States) in 2021 | CAS: 1043567-32-3

(11bS)-4-Hydroxy-2,6-di(phenanthren-9-yl)dinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide (cas: 1043567-32-3) belongs to chiral phosphine ligands. At present, the synthesis of new chiral phosphines designed specifically for nucleophilic organocatalysis remains a significant challenge. Indeed, very little research on chiral tertiary phosphine-catalyzed asymmetric reactions occurred prior to the year 2000.Quality Control of (11bS)-4-Hydroxy-2,6-di(phenanthren-9-yl)dinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide

Catalytic asymmetric and stereo-divergent oligonucleotide synthesis was written by Featherston, Aaron L.;Kwon, Yongseok;Pompeo, Matthew M.;Engl, Oliver D.;Leahy, David K.;Miller, Scott J.. And the article was included in Science (Washington, DC, United States) in 2021.Quality Control of (11bS)-4-Hydroxy-2,6-di(phenanthren-9-yl)dinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide This article mentions the following:

We report the catalytic stereocontrolled synthesis of dinucleotides. Chiral phosphoric acid (CPA) catalysts are demonstrated to control the formation of stereogenic phosphorous centers during phosphoramidite transfer for the first time. Unprecedented levels of diastereo-divergence are also demonstrated, enabling access to either phosphite diastereomer. Notably, two different CPA scaffolds prove essential for achieving stereo-divergence: peptide-embedded phosphothreonine-derived CPAs, which reinforce and amplify the inherent substrate preference, and C2-sym. BINOL-derived CPAs, which completely overturn this stereochem. preference. The presently reported catalytic method does not require stoichiometric activators or chiral auxiliaries and enables asym. catalysis with readily available phosphoramidites. The method was applied to the stereocontrolled synthesis of diastereomeric dinucleotides as well as cyclic dinucleotides (CDNs) which are of broad interest in immono-oncol. as agonists of the STING pathway. In the experiment, the researchers used many compounds, for example, (11bS)-4-Hydroxy-2,6-di(phenanthren-9-yl)dinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide (cas: 1043567-32-3Quality Control of (11bS)-4-Hydroxy-2,6-di(phenanthren-9-yl)dinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide).

(11bS)-4-Hydroxy-2,6-di(phenanthren-9-yl)dinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide (cas: 1043567-32-3) belongs to chiral phosphine ligands. At present, the synthesis of new chiral phosphines designed specifically for nucleophilic organocatalysis remains a significant challenge. Indeed, very little research on chiral tertiary phosphine-catalyzed asymmetric reactions occurred prior to the year 2000.Quality Control of (11bS)-4-Hydroxy-2,6-di(phenanthren-9-yl)dinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide

Referemce:
Phosphine ligand,
Chiral phosphines in nucleophilic organocatalysis