Kita, Yusuke; Hida, Shoji; Higashihara, Kenya; Jena, Himanshu Sekhar; Higashida, Kosuke; Mashima, Kazushi published the artcile< Chloride-Bridged Dinuclear Rhodium(III) Complexes Bearing Chiral Diphosphine Ligands: Catalyst Precursors for Asymmetric Hydrogenation of Simple Olefins>, Electric Literature of 139139-93-8, the main research area is diarylalkane enantioselective preparation; diarylalkene enantioselective hydrogenation rhodium catalyst; asymmetric catalysis; hydrogenation; reaction mechanisms; rhodium.
Efficient rhodium(III) catalysts were developed for asym. hydrogenation of simple olefins. A series of chloride-bridged dinuclear rhodium(III) complexes were synthesized from the rhodium(I) precursor [RhCl(cod)]2, chiral diphosphine ligands, and hydrochloric acid. Complexes from the series acted as efficient catalysts for asym. hydrogenation of (E)-prop-1-ene-1,2-diyldibenzene and its derivatives without any directing groups, in sharp contrast to widely used rhodium(I) catalytic systems that require a directing group for high enantioselectivity. The catalytic system was applied to asym. hydrogenation of allylic alcs., alkenylboranes, and unsaturated cyclic sulfones. Control experiments support the superiority of dinuclear rhodium(III) complexes over typical rhodium(I) catalytic systems.
Angewandte Chemie, International Edition published new progress about Aryl alkenes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-93-8 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Electric Literature of 139139-93-8.
Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate