Trost, Barry M’s team published research in Journal of the American Chemical Society in 2008-09-10 | 152140-65-3

Journal of the American Chemical Society published new progress about Alkyl aryl ketones Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Recommanded Product: N,N’-(11R,12R)-(9,10-Dihydro-9,10-ethanoanthracene-11,12-diyl)bis[2-(diphenylphosphino)benzamide].

Trost, Barry M.; Xu, Jiayi; Schmidt, Thomas published the artcile< Ligand Controlled Highly Regio- and Enantioselective Synthesis of α-Acyloxyketones by Palladium-Catalyzed Allylic Alkylation of 1,2-Enediol Carbonates>, Recommanded Product: N,N’-(11R,12R)-(9,10-Dihydro-9,10-ethanoanthracene-11,12-diyl)bis[2-(diphenylphosphino)benzamide], the main research area is enediol carbonate allyl alkylation palladium catalysis ligand; acetoxyketone asym preparation.

The palladium-catalyzed decarboxylative asym. allylic alkylation of allyl 1,2-enediol carbonates can decompose to either α-hydroxyketones or α-hydroxyaldehydes. The product distribution is largely controlled by the ligand. Using Lnaph in DME the ketone product is obtained in good to excellent yields and high enantiomeric excesses. The reaction proceeds under extremely mild conditions and was tested with a broad range of ester substrates. Besides commonly used protection groups, such as OAc and OPiv, a more functionalized group, Me but-2-enoyl, is also used that can eventually afford other synthetically interesting structures.

Journal of the American Chemical Society published new progress about Alkyl aryl ketones Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Recommanded Product: N,N’-(11R,12R)-(9,10-Dihydro-9,10-ethanoanthracene-11,12-diyl)bis[2-(diphenylphosphino)benzamide].

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Yen, Andy’s team published research in Organic Letters in 2019-09-20 | 277306-29-3

Organic Letters published new progress about Alkenes Role: RCT (Reactant), RACT (Reactant or Reagent) (Oxabicyclic). 277306-29-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C32H40FeP2, Recommanded Product: (2S)-1-[(1S)-1-[Bis(1,1-dimethylethyl)phosphino]ethyl]-2-(diphenylphosphino)ferrocene.

Yen, Andy; Pham, Anh Hoang; Larin, Egor M.; Lautens, Mark published the artcile< Rhodium-Catalyzed Enantioselective Synthesis of Oxazinones via an Asymmetric Ring Opening-Lactonization Cascade of Oxabicyclic Alkenes>, Recommanded Product: (2S)-1-[(1S)-1-[Bis(1,1-dimethylethyl)phosphino]ethyl]-2-(diphenylphosphino)ferrocene, the main research area is oxabicyclic alkene amino acid ester rhodium ring opening lactonization; oxazinone stereoselective preparation.

The rhodium-catalyzed asym. ring opening reaction of oxabicyclic alkenes is shown to be an efficient method for synthesizing chiral heterocycles. We demonstrate that the pairwise combination of chiral catalyst with chiral amino-acid-derived pronucleophiles results in a stereodivergent synthesis of diastereomeric hydroxyesters. A favorable conformational preference induces the subsequent lactonization of one diastereomer leading to the highly enantioselective synthesis of oxazinones.

Organic Letters published new progress about Alkenes Role: RCT (Reactant), RACT (Reactant or Reagent) (Oxabicyclic). 277306-29-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C32H40FeP2, Recommanded Product: (2S)-1-[(1S)-1-[Bis(1,1-dimethylethyl)phosphino]ethyl]-2-(diphenylphosphino)ferrocene.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Jiang, Quanbin’s team published research in Advanced Synthesis & Catalysis in 2013 | 139139-93-8

Advanced Synthesis & Catalysis published new progress about Alkyl aryl ketones Role: SPN (Synthetic Preparation), PREP (Preparation) (β-aryl). 139139-93-8 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Safety of (S)-(-)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl.

Jiang, Quanbin; Guo, Tenglong; Wang, Qingfu; Wu, Ping; Yu, Zhengkun published the artcile< Rhodium(I)-Catalyzed Arylation of β-Chloro Ketones and Related Derivatives through Domino Dehydrochlorination/ Conjugate Addition>, Safety of (S)-(-)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl, the main research area is chloro ketone rhodium arylation dehydrochlorination conjugate addition catalyst; aryl ketone preparation.

Highly efficient arylations of β-chloro ketones and their ester and amide derivatives were achieved by means of domino dehydrochlorination/Rh(I)-catalyzed conjugate addition In situ generated vinyl ketones and their analogs were identified as the reaction intermediates. The present synthetic protocol provides a concise route to (chiral) β-aryl ketones, esters, and amides.

Advanced Synthesis & Catalysis published new progress about Alkyl aryl ketones Role: SPN (Synthetic Preparation), PREP (Preparation) (β-aryl). 139139-93-8 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Safety of (S)-(-)-2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Zhang, Ze-Xin’s team published research in Angewandte Chemie, International Edition in 2016 | 152140-65-3

Angewandte Chemie, International Edition published new progress about Cyclization, stereoselective. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Product Details of C54H42N2O2P2.

Zhang, Ze-Xin; Chen, Si-Cong; Jiao, Lei published the artcile< Total Synthesis of (+)-Minfiensine: Construction of the Tetracyclic Core Structure by an Asymmetric Cascade Cyclization>, Product Details of C54H42N2O2P2, the main research area is minfiensine synthesis asym cascade cyclization; monoterpene indole alkaloid core structure preparation asym cascade cyclization; alkaloids; cyclizations; natural products; palladium; total synthesis.

A new method for one-step construction of the tetracyclic core structure of the indole alkaloid (+)-minfiensine was developed utilizing a palladium-catalyzed asym. indole dearomatization/iminium cyclization cascade. An efficient total synthesis of (+)-minfiensine was realized using this strategy. The present method enables access to the common core structure of a series of monoterpene indole alkaloids, such as vincorine, echitamine, and aspidosphylline A.

Angewandte Chemie, International Edition published new progress about Cyclization, stereoselective. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Product Details of C54H42N2O2P2.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Lipshutz, Bruce H’s team published research in Synthesis in 2007-10-16 | 277306-29-3

Synthesis published new progress about Esters, α,β-unsaturated Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 277306-29-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C32H40FeP2, Product Details of C32H40FeP2.

Lipshutz, Bruce H.; Lee, Ching-Tien; Taft, Benjamin R. published the artcile< A conjugate reduction pathway to chiral silanes using CuH>, Product Details of C32H40FeP2, the main research area is ester carboxylic silylated chiral preparation asym reduction hydrosilylation enoate; copper hydride ferrocenylphosphine catalyst asym reduction hydrosilylation enoate; silane carboxyalkyl chiral preparation asym reduction silyl enoate.

Asym. reduction of β-silyl α,β-unsaturated esters was achieved by CuH/(R,S)-PPF-P(tBu)2 reagent, affording chiral β-silylated arylalkanoate esters. β-Silyl enoates (Z)- and (E)-PhMe2SiCR:CHCO2R1 [(Z)-2, (E)-2, resp.] were prepared by Peterson or Horner-Wadsworth-Emmons olefination, resp., of the corresponding acylsilanes PhMe2SiCOR. The compounds 2 were reduced by CuH-catalyzed conjugate hydrosilylation by polymethylhydrosiloxane in the presence of chiral ferrocenylphosphine, (R,S)-1-[1-(di-tert-butylphosphino)ethyl]-2-diphenylphosphinoferrocene (1). Exptl. details concerning asym. 1,4-reduction of β-silylated-β,β-disubstituted enoates catalyzed by CuH are described.

Synthesis published new progress about Esters, α,β-unsaturated Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 277306-29-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C32H40FeP2, Product Details of C32H40FeP2.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Driver, Tom G’s team published research in Journal of the American Chemical Society in 2007-04-04 | 325168-88-5

Journal of the American Chemical Society published new progress about Hydroperoxides Role: PUR (Purification or Recovery), RCT (Reactant), SPN (Synthetic Preparation), PREP (Preparation), RACT (Reactant or Reagent). 325168-88-5 belongs to class chiral-phosphine-ligands, and the molecular formula is C48H50P2, Recommanded Product: (S)-(+)-4,12-Bis(di(3,5-xylyl)phosphino)-[2.2]-paracyclophane.

Driver, Tom G.; Harris, Jason R.; Woerpel, K. A. published the artcile< Kinetic Resolution of Hydroperoxides with Enantiopure Phosphines: Preparation of Enantioenriched Tertiary Hydroperoxides>, Recommanded Product: (S)-(+)-4,12-Bis(di(3,5-xylyl)phosphino)-[2.2]-paracyclophane, the main research area is hydroperoxide tertiary reductive kinetic resolution cyclophane phosphine.

An efficient reductive kinetic resolution strategy capable of accessing optically active tertiary hydroperoxides R1R2C(Ph)OOH (R1 = H, Me; R2 = Et, n-Pr, Me2CH, cyclohexyl, Me3CSiMe2OCH2, etc.) is reported. Readily accessible tertiary hydroperoxides are resolved with com. available (R)- or (S)-xylyl-PHANEPHOS with selectivity factors as large as 37. The resulting bis(phosphine oxide) can be recycled in high yields. The isolated mono(phosphine oxide) intermediate resolved hydroperoxides with the same selectivity as the parent bis-phosphine.

Journal of the American Chemical Society published new progress about Hydroperoxides Role: PUR (Purification or Recovery), RCT (Reactant), SPN (Synthetic Preparation), PREP (Preparation), RACT (Reactant or Reagent). 325168-88-5 belongs to class chiral-phosphine-ligands, and the molecular formula is C48H50P2, Recommanded Product: (S)-(+)-4,12-Bis(di(3,5-xylyl)phosphino)-[2.2]-paracyclophane.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Tanaka, Ken’s team published research in Synlett in 2007-06-01 | 139139-86-9

Synlett published new progress about Alkadiynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Computed Properties of 139139-86-9.

Tanaka, Ken; Nishida, Goushi; Sagae, Hiromi; Hirano, Masao published the artcile< Enantioselective synthesis of C2-symmetric dimethyl cyclohexadienedicarboxylates through cationic rhodium(I)/modified-BINAP-catalyzed [2+2+2] cycloadditions>, Computed Properties of 139139-86-9, the main research area is enediyne enantioselective intramol cycloaddition rhodium BINAP catalyst; diyne fumarate enantioselective cycloaddition rhodium BINAP catalyst; tricyclic cyclohexadienedicarboxylate asym synthesis; bicyclic cyclohexadienedicarboxylate asym synthesis.

A cationic rhodium(I)/(S)-Tol-BINAP complex was employed to catalyze an enantioselective intramol. [2+2+2] cycloaddition of a trans enediyne leading to a C2-sym. tricyclic di-Me cyclohexadienedicarboxylate in 95% yield with 59% ee. A cationic rhodium(I)/(R)-H8-BINAP complex was employed to catalyze an intermol. [2+2+2] cycloaddition of 1,6-diynes with di-Me fumarate leading to C2-sym. bicyclic di-Me cyclohexadienedicarboxylates in 35-96% yields with 82-98% ee.

Synlett published new progress about Alkadiynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, Computed Properties of 139139-86-9.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Trost, Barry M’s team published research in Organic Letters in 2019-03-15 | 152140-65-3

Organic Letters published new progress about Allylic alkylation catalysts, stereoselective. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Electric Literature of 152140-65-3.

Trost, Barry M.; Nagaraju, Anugula; Wang, Feijun; Zuo, Zhijun; Xu, Jiayi; Hull, Kami L. published the artcile< Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation of Dihydroquinolinones>, Electric Literature of 152140-65-3, the main research area is palladium catalyst decarboxylative asym allylic alkylation dihydroquinolinone.

A palladium-catalyzed decarboxylative asym. allylic alkylation (Pd-DAAA) of benzo-fused and non-benzo-fused δ-valerolactams is disclosed. This methodol. gives access to chiral lactams bearing C3-quaternary stereocenters, which are central to many natural products and biol. active compounds The reaction proceeds via palladium-catalyzed ionization of an allyl ester, followed by carbon dioxide extrusion and recombination of the electrophilic Pd-π-allyl complex with the in situ generated lactam enolate. This final step converts racemic allylic ester starting materials into enantiomerically enriched substituted lactams with high yield and enantiomeric excess.

Organic Letters published new progress about Allylic alkylation catalysts, stereoselective. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Electric Literature of 152140-65-3.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Cobley, Christopher J’s team published research in Organic Process Research & Development in 2003-06-30 | 325168-88-5

Organic Process Research & Development published new progress about Hydrogenation catalysts, stereoselective. 325168-88-5 belongs to class chiral-phosphine-ligands, and the molecular formula is C48H50P2, Category: chiral-phosphine-ligands.

Cobley, Christopher J.; Lennon, Ian C.; Praquin, Celine; Zanotti-Gerosa, Antonio; Appell, Robert B.; Goralski, Christian T.; Sutterer, Angela C. published the artcile< Highly Efficient Asymmetric Hydrogenation of 2-Methylenesuccinamic Acid Using a Rh-DuPHOS Catalyst>, Category: chiral-phosphine-ligands, the main research area is methylsuccinamic acid enantioselective preparation; methylenesuccinamic acid preparation; asym hydrogenation methylenesuccinamic acid rhodium DuPHOS catalyst; chloride residue methylenesuccinamic acid hindrance asym hydrogenation.

Nonracemic 2-methylsuccinamic acid HO2CCHMeCH2CONH2 is prepared efficiently in two steps from itaconic anhydride using an asym. hydrogenation as the key step. Ring opening of itaconic anhydride with an aqueous solution of ammonium hydroxide followed by neutralization with sulfuric acid yields 2-methylenesuccinamic acid HO2CC(:CH2)CH2CONH2 in 53% yield after recrystallization to remove 3-methylenesuccinamic acid present as an impurity. The use of hydrochloric acid in the neutralization step as in previous procedures leads to the presence of chloride residues in the product; hydrogenation of 2-methylenesuccinamic acid containing chloride residues requires higher loadings of catalyst and longer reaction times, although the enantiomeric excess of the 2-methylsuccinamic acid produced is unaffected. Using 0.001 mol% {[(S,S)-Et-DuPHOS]Rh(COD)}+BF4- as the precatalyst for hydrogenation of 2-methylenesuccinamic acid in methanol under 140 atm of hydrogen at 45°, (R)-2-methylsuccinamic acid is obtained in 96% ee. Single-crystal digestion of (R)-2-methylsuccinamic acid obtained from the hydrogenation yields (R)-2-methylsuccinamic acid in >99.5% ee and 77% conversion containing less than 1 ppm rhodium.

Organic Process Research & Development published new progress about Hydrogenation catalysts, stereoselective. 325168-88-5 belongs to class chiral-phosphine-ligands, and the molecular formula is C48H50P2, Category: chiral-phosphine-ligands.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Trost, Barry M’s team published research in Angewandte Chemie, International Edition in 2005 | 152140-65-3

Angewandte Chemie, International Edition published new progress about Allylation catalysts. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Application In Synthesis of 152140-65-3.

Trost, Barry M.; Frederiksen, Mathias U. published the artcile< Palladium-catalyzed asymmetric allylation of prochiral nucleophiles: synthesis of 3-allyl-3-aryl oxindoles>, Application In Synthesis of 152140-65-3, the main research area is arylindolinone allyl acetate allylation palladium chiral phosphine; allyl arylindolinone asym preparation; palladium chiral phosphine asym allylation catalyst.

Excellent yields and enantioselectivies were attained in the synthesis of 3-alkyl-3-aryloxindoles, e.g., I, based on the Pd-catalyzed asym. allylic alkylation reaction. This approach utilizes a nonbasic hydroxylic additive in the transformation of 3-aryloxindoles into complex, synthetically valuable oxindoles.

Angewandte Chemie, International Edition published new progress about Allylation catalysts. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Application In Synthesis of 152140-65-3.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate