Tanaka, Ken’s team published research in Synlett in 2007-06-01 | 139139-86-9

Synlett published new progress about Alkadiynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, SDS of cas: 139139-86-9.

Tanaka, Ken; Nishida, Goushi; Sagae, Hiromi; Hirano, Masao published the artcile< Enantioselective synthesis of C2-symmetric dimethyl cyclohexadienedicarboxylates through cationic rhodium(I)/modified-BINAP-catalyzed [2+2+2] cycloadditions>, SDS of cas: 139139-86-9, the main research area is enediyne enantioselective intramol cycloaddition rhodium BINAP catalyst; diyne fumarate enantioselective cycloaddition rhodium BINAP catalyst; tricyclic cyclohexadienedicarboxylate asym synthesis; bicyclic cyclohexadienedicarboxylate asym synthesis.

A cationic rhodium(I)/(S)-Tol-BINAP complex was employed to catalyze an enantioselective intramol. [2+2+2] cycloaddition of a trans enediyne leading to a C2-sym. tricyclic di-Me cyclohexadienedicarboxylate in 95% yield with 59% ee. A cationic rhodium(I)/(R)-H8-BINAP complex was employed to catalyze an intermol. [2+2+2] cycloaddition of 1,6-diynes with di-Me fumarate leading to C2-sym. bicyclic di-Me cyclohexadienedicarboxylates in 35-96% yields with 82-98% ee.

Synlett published new progress about Alkadiynes Role: RCT (Reactant), RACT (Reactant or Reagent). 139139-86-9 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, SDS of cas: 139139-86-9.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Trost, Barry M’s team published research in Organic Letters in 2019-03-15 | 152140-65-3

Organic Letters published new progress about Allylic alkylation catalysts, stereoselective. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Application of C54H42N2O2P2.

Trost, Barry M.; Nagaraju, Anugula; Wang, Feijun; Zuo, Zhijun; Xu, Jiayi; Hull, Kami L. published the artcile< Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation of Dihydroquinolinones>, Application of C54H42N2O2P2, the main research area is palladium catalyst decarboxylative asym allylic alkylation dihydroquinolinone.

A palladium-catalyzed decarboxylative asym. allylic alkylation (Pd-DAAA) of benzo-fused and non-benzo-fused δ-valerolactams is disclosed. This methodol. gives access to chiral lactams bearing C3-quaternary stereocenters, which are central to many natural products and biol. active compounds The reaction proceeds via palladium-catalyzed ionization of an allyl ester, followed by carbon dioxide extrusion and recombination of the electrophilic Pd-π-allyl complex with the in situ generated lactam enolate. This final step converts racemic allylic ester starting materials into enantiomerically enriched substituted lactams with high yield and enantiomeric excess.

Organic Letters published new progress about Allylic alkylation catalysts, stereoselective. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, Application of C54H42N2O2P2.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Cobley, Christopher J’s team published research in Organic Process Research & Development in 2003-06-30 | 325168-88-5

Organic Process Research & Development published new progress about Hydrogenation catalysts, stereoselective. 325168-88-5 belongs to class chiral-phosphine-ligands, and the molecular formula is C48H50P2, Recommanded Product: (S)-(+)-4,12-Bis(di(3,5-xylyl)phosphino)-[2.2]-paracyclophane.

Cobley, Christopher J.; Lennon, Ian C.; Praquin, Celine; Zanotti-Gerosa, Antonio; Appell, Robert B.; Goralski, Christian T.; Sutterer, Angela C. published the artcile< Highly Efficient Asymmetric Hydrogenation of 2-Methylenesuccinamic Acid Using a Rh-DuPHOS Catalyst>, Recommanded Product: (S)-(+)-4,12-Bis(di(3,5-xylyl)phosphino)-[2.2]-paracyclophane, the main research area is methylsuccinamic acid enantioselective preparation; methylenesuccinamic acid preparation; asym hydrogenation methylenesuccinamic acid rhodium DuPHOS catalyst; chloride residue methylenesuccinamic acid hindrance asym hydrogenation.

Nonracemic 2-methylsuccinamic acid HO2CCHMeCH2CONH2 is prepared efficiently in two steps from itaconic anhydride using an asym. hydrogenation as the key step. Ring opening of itaconic anhydride with an aqueous solution of ammonium hydroxide followed by neutralization with sulfuric acid yields 2-methylenesuccinamic acid HO2CC(:CH2)CH2CONH2 in 53% yield after recrystallization to remove 3-methylenesuccinamic acid present as an impurity. The use of hydrochloric acid in the neutralization step as in previous procedures leads to the presence of chloride residues in the product; hydrogenation of 2-methylenesuccinamic acid containing chloride residues requires higher loadings of catalyst and longer reaction times, although the enantiomeric excess of the 2-methylsuccinamic acid produced is unaffected. Using 0.001 mol% {[(S,S)-Et-DuPHOS]Rh(COD)}+BF4- as the precatalyst for hydrogenation of 2-methylenesuccinamic acid in methanol under 140 atm of hydrogen at 45°, (R)-2-methylsuccinamic acid is obtained in 96% ee. Single-crystal digestion of (R)-2-methylsuccinamic acid obtained from the hydrogenation yields (R)-2-methylsuccinamic acid in >99.5% ee and 77% conversion containing less than 1 ppm rhodium.

Organic Process Research & Development published new progress about Hydrogenation catalysts, stereoselective. 325168-88-5 belongs to class chiral-phosphine-ligands, and the molecular formula is C48H50P2, Recommanded Product: (S)-(+)-4,12-Bis(di(3,5-xylyl)phosphino)-[2.2]-paracyclophane.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Trost, Barry M’s team published research in Angewandte Chemie, International Edition in 2005 | 152140-65-3

Angewandte Chemie, International Edition published new progress about Allylation catalysts. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, HPLC of Formula: 152140-65-3.

Trost, Barry M.; Frederiksen, Mathias U. published the artcile< Palladium-catalyzed asymmetric allylation of prochiral nucleophiles: synthesis of 3-allyl-3-aryl oxindoles>, HPLC of Formula: 152140-65-3, the main research area is arylindolinone allyl acetate allylation palladium chiral phosphine; allyl arylindolinone asym preparation; palladium chiral phosphine asym allylation catalyst.

Excellent yields and enantioselectivies were attained in the synthesis of 3-alkyl-3-aryloxindoles, e.g., I, based on the Pd-catalyzed asym. allylic alkylation reaction. This approach utilizes a nonbasic hydroxylic additive in the transformation of 3-aryloxindoles into complex, synthetically valuable oxindoles.

Angewandte Chemie, International Edition published new progress about Allylation catalysts. 152140-65-3 belongs to class chiral-phosphine-ligands, and the molecular formula is C54H42N2O2P2, HPLC of Formula: 152140-65-3.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Grasa, Gabriela A’s team published research in Tetrahedron Letters in 2008-09-01 | 325168-88-5

Tetrahedron Letters published new progress about Hydrogenation catalysts, stereoselective. 325168-88-5 belongs to class chiral-phosphine-ligands, and the molecular formula is C48H50P2, Application In Synthesis of 325168-88-5.

Grasa, Gabriela A.; Zanotti-Gerosa, Antonio; Ghosh, Shyamali; Teleha, Christopher A.; Kinney, William A.; Maryanoff, Bruce E. published the artcile< Efficient, enantioselective synthesis of a β,β-disubstituted carboxylic acid by Ru-XylPhanePhos-catalyzed asymmetric hydrogenation>, Application In Synthesis of 325168-88-5, the main research area is piperidinebutenoic acid quinolinyl stereoselective reduction phanephos ruthenium catalyst.

Enantioselective preparation of a key αvβ3 integrin antagonist intermediate, (3S)-3-(quinolin-3-yl)-4-(1-tert.-butoxycarbonylpiperidin-4-yl)butanoic acid, was accomplished via catalytic asym. hydrogenation of the corresponding but-2-enoic acid. The successful application of a Ru-(R)-XylPhanePhos catalyst to this type of substrate is unprecedented. In situ NMR experiments of pre-catalyst formation/activation by CH3CO2H, and reaction parameter modification, revealed that [Ru(COD)(CF3CO2)2]2/(R)-XylPhanePhos is a highly active and efficient catalytic system.

Tetrahedron Letters published new progress about Hydrogenation catalysts, stereoselective. 325168-88-5 belongs to class chiral-phosphine-ligands, and the molecular formula is C48H50P2, Application In Synthesis of 325168-88-5.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Nishida, Goushi’s team published research in Angewandte Chemie, International Edition in 2007-06-30 | 139139-93-8

Angewandte Chemie, International Edition published new progress about Crystal structure. 139139-93-8 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, HPLC of Formula: 139139-93-8.

Nishida, Goushi; Noguchi, Keiichi; Hirano, Masao; Tanaka, Ken published the artcile< Asymmetric assembly of aromatic rings to produce tetra-ortho-substituted axially chiral biaryl phosphorus compounds>, HPLC of Formula: 139139-93-8, the main research area is asym aromatic ring substituted tetra axially chiral biaryl phosphorus; dicyclohexylphosphinoyl methoxynaphthalenyl dihydroisobenzofuran preparation crystal mol structure.

Densely substituted title compounds can be obtained efficiently through an enantioselective [2 + 2 + 2] cycloaddition catalyzed by a cationic Rh1/H8-binap (H8-binap = 2,2′-bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl) complex. This method is highly up to > 99% yield practical in view of the ready access to up to 98% ee substrates, mild reaction conditions, operational simplicity, and high catalytic activity. The crystal structure of one of the biaryl phosphorus compound is described.

Angewandte Chemie, International Edition published new progress about Crystal structure. 139139-93-8 belongs to class chiral-phosphine-ligands, and the molecular formula is C44H40P2, HPLC of Formula: 139139-93-8.

Referemce:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate