Sep 2021 News Can You Really Do Chemisty Experiments About Bis(4-(trifluoromethyl)phenyl)phosphine oxide

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Computed Properties of C14H9F6OP. In my other articles, you can also check out more blogs about 15929-43-8

15929-43-8, Name is Bis(4-(trifluoromethyl)phenyl)phosphine oxide, molecular formula is C14H9F6OP, belongs to chiral-phosphine-ligands compound, is a common compound. In a patnet, once mentioned the new application about 15929-43-8, Computed Properties of C14H9F6OP

We carried out a comprehensive study on the generality, scope, limitations, and mechanism of the palladium-catalyzed hydrophosphorylation of alkynes with P(O)-H compounds (i.e., H-phosphonates, H-phosphinates, secondary phosphine oxides, and hypophosphinic acid). For H-phosphonates, Pd/dppp was the best catalyst. Both aromatic and aliphatic alkynes, with a variety of functional groups, were applicable to produce the Markovnikov adducts in high yields with high regioselectivity. Aromatic alkynes showed higher reactivity than aliphatic alkynes. Terminal alkynes reacted faster than internal alkynes. Sterically crowded H-phosphonates disfavored the addition. For H-phosphinates and secondary phosphine oxides, Pd/dppe/Ph2P(O)OH was the catalyst of choice, which led to highly regioselective formation of the Markovnikov adducts. By using Pd(PPh3)4 as the catalyst, hypophosphinic acid added to terminal alkynes to give the corresponding Markovnikov adducts. Phosphinic acids, phosphonic acid, and its monoester were not applicable to this palladium-catalyzed hydrophosphorylation. Mechanistic studies showed that, with a terminal alkyne, (RO)2P(O)H reacted, like a Br°nsted acid, to selectively generate the alpha-alkenylpalladium intermediate via hydropalladation. On the other hand, Ph(RO)P(O)H and Ph2P(O)H gave a mixture of alpha- and beta-alkenylpalladium complexes. In the presence of Ph2P(O)OH, hydropalladation with this acid took place first to selectively generate the alpha-alkenylpalladium intermediate. A subsequent ligand exchange with a P(O)H compound gave the phosphorylpalladium intermediate which produced the Markovnikov adduct via reductive elimination. Related intermediates in the catalytic cycle were isolated and characterized.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Computed Properties of C14H9F6OP. In my other articles, you can also check out more blogs about 15929-43-8

Reference:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate