If you are hungry for even more, make sure to check my other article about 13991-08-7. Synthetic Route of 13991-08-7
Synthetic Route of 13991-08-7, Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn’t involve a screen. 13991-08-7, C30H24P2. A document type is Article, introducing its new discovery.
Functional 2-pyrazolyl-6-phenylpyridine chelates – namely, (pzpyphBu)H2 and (pzpyphCF3)H2 and phosphines – are successfully employed in the preparation of emissive Ir(III) metal complexes, for which the reaction with phosphine such as PPh3, PPh2Me, and PPh2(CH2Ph) afford corresponding Ir(III) complexes [Ir(pzpyphBu)(PPh3)2H] (1a), [Ir(pzpyphCF3)(PPh2R)2H] (2a-2c), R = Ph, Me, CH2Ph, which also show an equatorial coordinated hydride. In contrast, treatment with 1,2-bis(diphenylphosphino)benzene (dppb) and 1,2-bis(diphenylphosphino)ethane (dppe) yields the isomeric products [Ir(pzpyphBu)(dppb)H] (3a) and [Ir(pzpyphBu)(dppe)H] (3b), for which the distinctive, axial hydride undergoes rapid chlorination, forming chlorinated complexes [Ir(pzpyphBu)(dppb)Cl] (4a) and [Ir(pzpyphBu)(dppe)Cl] (4b), respectively. On the other hand, upon extensive heating of 2c, one of its coordinated PPh2(CH2Ph) exhibits benzyl cyclometalation and hydride elimination to afford [Ir(pzpyphCF3)(PPh2R)(PPh2R?)] (5c and 6c) R = CH2Ph and R? = CH2(o-C6H4) as the kinetic and thermodynamic products, respectively. Their structural, photophysical, and electrochemical properties are examined and further affirmed by the computational approaches.
If you are hungry for even more, make sure to check my other article about 13991-08-7. Synthetic Route of 13991-08-7
Reference:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate