Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn’t involve a screen. 166330-10-5, C36H28OP2. A document type is Article, introducing its new discovery., Application In Synthesis of (Oxybis(2,1-phenylene))bis(diphenylphosphine)
In this paper, we report six phosphorescent Cu(I) complexes with 1,10-phenanthroline-derived ligands and phosphorous ligands, including their synthesis, crystal structures, photophysical properties, and electronic nature. The Cu(I) center has a distorted tetrahedral geometry within the Cu(I) complexes. Theoretical calculation reveals that all emissions originate from triplet metal-to-ligand-charge-transfer excited state. It is found that the introduction of alkyl moieties into 2,9-positions of 1,10-phenanthroline is highly effective on restricting the geometric relaxation that occurs in excited states, which greatly enhances the photoluminescence (PL) performances, including PL quantum yield improvement, PL decay lifetime increase, and emission blue shift.
Interested yet? Keep reading other articles of 166330-10-5!, Application In Synthesis of (Oxybis(2,1-phenylene))bis(diphenylphosphine)
Reference:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate