New explortion of 161265-03-8

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Product Details of 161265-03-8, you can also check out more blogs about161265-03-8

The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.161265-03-8, Name is (9,9-Dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphine), molecular formula is C39H32OP2. In a Article,once mentioned of 161265-03-8, Application In Synthesis of (9,9-Dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphine)

The synthesis and characterization, as well as photoluminescent and electrochemical features of a series of ionic copper(I) complexes?, i.e., [Cu(N^N)(P^P)]+, where N^N is 4,4?-diethylester-2,2?-biquinoline (dcbq) and P^P is bis-triphenylphosphine, bis[2-(diphenylphosphino)phenyl)ether] (POP), or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos)?are reported along with their application to achieve both deep-red and white light-emitting electrochemical cells (LECs). In short, the first deep-red Cu(I)-based LECs featuring high irradiances (?100 muW cm?2) and excellent color stability (x/y CIE color coordinates of 0.66/0.32) over days are reported. This is achieved by comparing the electroluminescent behavior of this series of complexes with respect to the irradiance and stability, as well as the impact of introducing supporting electrolytes on the device performance. This is rationalized using spectroscopic and electrochemical studies. Finally, the first white-emitting LEC is manufactured with red-emitting copper(I) complexes, achieving x/y CIE color coordinates of 0.31/0.32 and a high color rendering index of 92.

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Product Details of 161265-03-8, you can also check out more blogs about161265-03-8

Reference:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate