Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 166330-10-5, Name is (Oxybis(2,1-phenylene))bis(diphenylphosphine), name: (Oxybis(2,1-phenylene))bis(diphenylphosphine).
In this paper, we report the synthesis of four diimine ligands incorporated with an electron donor/acceptor, as well as their corresponding Cu(I) complexes with bis(2-(diphenylphosphanyl)phenyl) ether as an ancillary ligand, resulting in four phosphorescent Cu(I) complexes. Their crystal structures as well as photophysical and thermal properties are discussed in detail. Experimental data and theoretical calculations confirm that electron donor moieties and limited conjugation system may self-restrict geometry relaxation in excited states, leading to narrowed and blue-shifted emission bands. On the other hand, electron acceptor moieties and large coplanar conjugation system are ineffective in restricting geometry relaxation, leading to broadened and red-shifted emission bands. However, the introduction of electron donors compromises thermal stability of Cu(I) complexes. We also explore one of the Cu(I) complexes as a dopant for electroluminescence application, and a maximum luminance of 680 cd/m2 peaking at 620 nm is achieved.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.name: (Oxybis(2,1-phenylene))bis(diphenylphosphine). In my other articles, you can also check out more blogs about 166330-10-5
Reference:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate