Electric Literature of 17261-28-8. Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 17261-28-8, Name is 2-(Diphenylphosphino)benzoic acid
We introduce a novel platform to mimic the coordination environment of carboxylate-bridged diiron proteins by tethering a small, dangling internal carboxylate, (CH2)nCOOH, to phenol-imine macrocyclic ligands (H3PIMICn). In the presence of an external bulky carboxylic acid (RCO2H), the ligands react with [Fe2(Mes)4] (Mes = 2,4,6-trimethylphenyl) to afford dinuclear [Fe2(PIMICn)(RCO2)(MeCN)] (n = 4-6) complexes. X-ray diffraction studies revealed structural similarities between these complexes and the reduced diiron active sites of proteins such as Class I ribonucleotide reductase (RNR) R2 and soluble methane monooxygenase hydroxylase. The number of CH2 units of the internal carboxylate arm controls the diiron core geometry, affecting in turn the anodic peak potential of the complexes. As functional synthetic models, these complexes facilitate the oxidation of C-H bonds in the presence of peroxides and oxo transfer from O2 to an internal phosphine moiety.
If you are hungry for even more, make sure to check my other article about 17261-28-8. Electric Literature of 17261-28-8
Reference:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate