Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn’t involve a screen. 161265-03-8, C39H32OP2. A document type is Review, introducing its new discovery., Quality Control of: (9,9-Dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphine)
Visible Light-Induced Excited-State Transition-Metal Catalysis
In recent years, visible light-induced excited-state transition-metal (TM) (Mn, Co, Cu, and Pd) catalysis has attracted significant attention for the development of various chemical transformations. In contrast to metal/photoredox dual catalysis that uses conventional photosensitizers and TMs cooperatively, photoexcited-state TM catalysis uses a single TM complex as both the photocatalyst (PC) and the cross-coupling catalyst, resulting in more sustainable and efficient reactions. Unlike the outer-sphere mechanism active in conventional photocatalysis, these TM catalysts operate through a photoinduced inner-sphere mechanism in which the substrate?TM interaction is crucial for the bond-breaking or bond-forming steps, making this system an important advance in efficient carbon?carbon (C?C) bond formation reactions. Given the importance of these TM complexes as next-generation PCs with distinct mechanisms, in this review we highlight recent developments in photoexcited TM catalysis for C?C bond formation.
Interested yet? Keep reading other articles of 161265-03-8!, Quality Control of: (9,9-Dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphine)
Reference:
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate