The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature. 1486-28-8, Name is Methyldiphenylphosphine, SMILES is CP(C1=CC=CC=C1)C2=CC=CC=C2, in an article , author is Song, Lu, once mentioned of 1486-28-8, Quality Control of Methyldiphenylphosphine.
Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes
Chiral nitriles and their derivatives are prevalent in pharmaceuticals and bioactive compounds. Enantioselective alkene hydrocyanation represents a convenient and efficient approach for synthesizing these molecules. However, a generally applicable method featuring a broad substrate scope and high functional group tolerance remains elusive. Here, we address this long-standing synthetic problem using dual electrocatalysis. Using this strategy, we leverage electrochemistry to seamlessly combine two canonical radical reactions-cobalt-mediated hydrogen-atom transfer and copper-promoted radical cyanation-to accomplish highly enantioselective hydrocyanation without the need for stoichiometric oxidants. We also harness electrochemistry’s unique feature of precise potential control to optimize the chemoselectivity of challenging substrates. Computational analysis uncovers the origin of enantio-induction, for which the chiral catalyst imparts a combination of attractive and repulsive non-covalent interactions to direct the enantio-determining C-CN bond formation. This work demonstrates the power of electrochemistry in accessing new chemical space and providing solutions to pertinent challenges in synthetic chemistry.
Interested yet? Read on for other articles about 1486-28-8, you can contact me at any time and look forward to more communication. Quality Control of Methyldiphenylphosphine.
Reference:
Phosphine ligand,
,Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate