A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 13406-29-6, Name is Tris(4-(trifluoromethyl)phenyl)phosphine, molecular formula is C21H12F9P. In a Article£¬once mentioned of 13406-29-6, name: Tris(4-(trifluoromethyl)phenyl)phosphine
Gold(I)-Catalysed Hydroarylation of 1,3-Disubstituted Allenes with Efficient Axial-to-Point Chirality Transfer
Hydroarylation of enantioenriched 1,3-disubstituted allenes has the potential to proceed with axial-to-point chirality transfer to yield enantioenriched allylated (hetero)aryl compounds. However, the gold-catalysed intermolecular reaction was previously reported to occur with no chirality transfer owing to competing allene racemisation. Herein, we describe the development of the first intermolecular hydroarylations of allenes to proceed with efficient chirality transfer and summarise some of the key criteria for achieving high regio- and stereoselectivity.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.name: Tris(4-(trifluoromethyl)phenyl)phosphine. In my other articles, you can also check out more blogs about 13406-29-6
Reference£º
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate