Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.Formula: C21H12F9P, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 13406-29-6, in my other articles.
A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 13406-29-6, Name is Tris(4-(trifluoromethyl)phenyl)phosphine, molecular formula is C21H12F9P. In a Article£¬once mentioned of 13406-29-6, Formula: C21H12F9P
Structural properties and dissociative fluxional motion of 2,9-dimethyl-1,10-phenanthroline in platinum(II) complexes
A dynamic 1H NMR study has been carried out on the fluxional motion of the symmetric chelating ligand 2,9-dimethyl-1,10-phenanthroline (Me2-phen) between nonequivalent exchanging sites in a variety of square-planar complexes of the type [Pt(Me)(Me2-phen)(PR 3)]BArf, 1-14, (BArf = 8[3,5-(CF3)2C 6H3]4. In these compounds, the P-donor ligands PR3 encompass a wide range of steric and electronic characteristics [PR3 = P(4-XC6H4)3, X = H 1, F, 2, Cl 3, CF3 4, MeO 5, Me 6; PR3 = PMe2(C 6H5)2 7, PMe2(C6H 5) 8, PMe3 9, PEt3 10, P(i-Pr)3 11, PCy(C6H5)2 12, PCy2(C 6H5) 13, PCy3 14]. All complexes have been synthesized and fully characterized through elemental analysis, 1H and 31P{1H} NMR. X-ray crystal structures are reported for the compounds 8, 11, 14, and for [Pt-(Me)(phen)(P(C6H 5)3)]PF6 (15), all but the last showing loss of planarity and a significant rotation of the Me2-phen moiety around the N1-N2 vector. Steric congestion brought about by the P-donor ligands is responsible for tetrahedral distortion of the coordination plane and significant lengthening of the Pt-N2 (cis to phosphane) bond distances. Application of standard quantitative analysis of ligand effects (QALE) methodology enabled a quantitative separation of steric and electronic contributions of P-donor ligands to the values of the platinum-phosphorus 1JPtP coupling constants and of the free activation energies DeltaG? of the fluxional motion of Me2-phen in 1-14. The steric profiles for both 1JPtP and DeltaG? show the onset of steric thresholds (at cone angle values of 150 and 148, respectively), that are associated with an overload of steric congestion already evidenced by the crystal structures of 11 and 14. The sharp increase of the fluxional rate of Me2-phen can be assumed as a perceptive kinetic tool for revealing ground-state destabilization produced by the P-donor ligands. The mechanism involves initial breaking of a metal-nitrogen bond, fast interconversion between two 14-electron three-coordinate T-shaped intermediates containing eta1-coordinated Me2-phen, and final ring closure. By use of the results from QALE regression analysis, a free-energy surface has been constructed that represents the way in which any single P-donor ligand can affect the energy of the transition state in the absence of aryl or pi-acidity effects.
Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.Formula: C21H12F9P, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 13406-29-6, in my other articles.
Reference£º
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate