Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 1608-26-0, Name is Tris(dimethylamino)phosphine
, 1608-26-0.
Tellurium Precursor for Nanocrystal Synthesis: Tris(dimethylamino)phosphine Telluride
Preparations of CdTe quantum platelets, magic-size (CdTe)13 nanoclusters, and CdTe quantum wires are described using (Me2N)3PTe (with (Me2N)3P) as a Te precursor. The (Me2N)3PTe/(Me2N)3P precursor mixture is shown to be more reactive than mixtures of trialkylphosphine tellurides and the corresponding trialkylphosphines, R3PTe/R3P, which are commonly employed in nanocrystal syntheses. For syntheses conducted in primary amine solvents, (Me2N)3PTe and (Me2N)3P undergo a transamination reaction, affording (Me2N)x(RHN)3-xPTe and (Me2N)x(RHN)3-xP (R = n-octyl or oleyl). The transaminated (Me2N)x(RHN)3-xPTe derivatives are shown to be the likely Te precursors under those conditions. The enhanced reactivities of the tris(amino)phosphine tellurides are ascribed to increased nucleophilicity due to the amino-N lone pairs.
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. 1608-26-0, In my other articles, you can also check out more blogs about 1608-26-0
Reference£º
Phosphine ligand,
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate