With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.855-38-9,Tris(4-methoxyphenyl)phosphine,as a common compound, the synthetic route is as follows.,855-38-9
EXAMPLE 20 N-(2,2,2-Trifluoroethyl)-6-[1-methyl-3-(trifluoromethyl)pyrazol-5-yloxy]pyridine-2-carboxamide Analogously to Example 14, 1.39 g (5 mmol) of 2-chloro-6-[1-methyl-3-(trifluoromethyl)-pyrazol-5-yloxy]pyridine, 0.75 g (7.57 mmol, 98 percent content) of 2,2,2-trifluoroethylamine, 0.80 g (7.55 mmol) of anhydrous sodium carbonate, 5.6 mg (25 mumol) of palladium(II) acetate and 88 mg (0.25 mmol) of tris(4-methoxyphenyl)phosphine in 20 ml of methylcyclohexane were reacted under a CO pressure of 21 bar. The yield was 0.96 g (75.4 percent) of a white solid. The melting point was 135.8 to 136.3 C. (from methylcyclohexane). Other data concerning the product was: MS; m/z: 368 (M+); 242 (100 percent) 1 H NMR (CDCl3): delta=3.82 (s, 3H); 4.05 (m, 2H); 6.29 (s, 1H); 7.27 (dt, J=8.1/0.6 Hz, 1H); 7.64 (br. s, 1H); 8.01 (dd, J=7.3/0.5 Hz, 1H); 8.07 (d, J=7.3 Hz, 1H).
The synthetic route of 855-38-9 has been constantly updated, and we look forward to future research findings.
Reference£º
Patent; Lonza AG; US5900484; (1999); A;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate