Analyzing the synthesis route of 564483-18-7

The synthetic route of 564483-18-7 has been constantly updated, and we look forward to future research findings.

564483-18-7,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.564483-18-7,2-(Dicyclohexylphosphino)-2′,4′,6′-tri-i-propyl-1,1′-biphenyl,as a common compound, the synthetic route is as follows.

Example 7A N-(2-Fluoro-4-nitrophenyl)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-4-amine 50 mg (0.19 mmol) of 1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-4-amine, 61 mg (0.23 mmol) of 2-fluoro-1-iodo-4-nitrobenzene and 26 mg (0.27 mmol) of sodium tert-butoxide are initially charged in 1 ml of toluene. The mixture is degassed. 8.7 mg (0.01 mmol) of tris(dibenzylideneacetone)dipalladium and 9.1 mg (0.02 mmol of dicyclohexyl(2′,4′,6′-triisopropylbiphenyl-2-yl)phosphine are then added. The mixture is heated in a sealed vessel at 120 C. overnight. The mixture is then filtered through an Extrelut cartridge (mobile phase: dichloromethane/methanol 10:1) and purified by preparative HPLC. Yield: 38 mg (50% of theory) LC-MS (Method 3): Rt=2.73 min. MS (ESI pos.): m/z=403 [M+H]+. 1H-NMR (DMSO-d6, 300 MHz): delta=-0.09 (s, 9H), 0.82 (t, 2H), 3.52 (t, 2H), 5.60 (s, 2H), 6.50 (d, 1H), 6.84 (d, 1H), 7.37 (t, 1H), 7.50 (d, 1H), 8.04 (dd, 1H), 8.13 (d, 1H), 8.17 (dd, 1H), 9.33 (s, 1H).

The synthetic route of 564483-18-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Bayer HealthCare AG; US2008/269268; (2008); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Analyzing the synthesis route of 6224-63-1

6224-63-1, 6224-63-1 Tri-m-tolylphosphine 80362, achiral-phosphine-ligands compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.6224-63-1,Tri-m-tolylphosphine,as a common compound, the synthetic route is as follows.

Under inert gas protection, 344 mg of Fe2S2(CO)6 (1 mmol) and 20 mL of tetrahydrofuran solvent were added to the flask containing the stirring magnets.A dark red solution was obtained, and the obtained solution was cooled to -78 ¡ã C with a liquid nitrogen bath, and 2 mL of a lithium triethylborohydride (1M in THF) solution was slowly added under stirring.After reacting for 15 min, 0.18 mL of trifluoroacetic acid (2.2 mmol) was added and the reaction was continued for 15 min.Add 304 mg of P(C6H4-3-CH3)3 (1.0 mmol), stir at room temperature for 3 h, then add 630 mg of I-4-C6H4N(CH2Cl)2 (2 mmol) and 0.28 mL of triethylamine.The reaction was stirred at room temperature for 12 h. The tetrahydrofuran solvent was removed by rotary evaporation, and the residue was extracted with dichloromethane.Then, thin layer chromatography was carried out using a developing solvent of dichloromethane/petroleum ether in a volume ratio of 1:6, and the main ribbon was collected to obtain a model 3.

6224-63-1, 6224-63-1 Tri-m-tolylphosphine 80362, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Patent; Sichuan University of Science and Engineering; Li Yulong; He Jiao; Wu Yu; Xie Ying; Jiang Jin; Sun Yanchun; Wang Zheng; Zou Like; Xie Bin; Gao Fan; Mu Chao; (11 pag.)CN109232665; (2019); A;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Analyzing the synthesis route of 787618-22-8

787618-22-8 Dicyclohexyl(2′,6′-diisopropoxy-[1,1′-biphenyl]-2-yl)phosphine 121592071, achiral-phosphine-ligands compound, is more and more widely used in various fields.

787618-22-8, Dicyclohexyl(2′,6′-diisopropoxy-[1,1′-biphenyl]-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

787618-22-8, [Step 4] tert-Butyl 7-methyl-8-(4-methylpiperazin-1-yl)-5-oxo-1,5-dihydro-2H-chromeno[3,4-c]pyridine-3(4H)-carboxylate To a suspension of tert-butyl 7-methyl-5-oxo-8-{[(trifluoromethyl) sulfonyl]oxy}-1,5-dihydro-2H-chromeno[3,4-c]pyridine-3(4H)-carboxylate (5.60 g) in toluene (100 ml), cesium carbonate (5.91 g), chloro-(2-dicyclohexylphosphino-2′,6′-diisopropoxy-1,1′-biphenyl)[2-(2-aminoethyl)phenyl]palladium (II)-methyl-t-butyl ether adduct (250 mg), 2-dicyclohexylphosphino-2′,6′-diisopropoxybiphenyl (141 mg) and 1-methylpiperazine (3.33 ml) were added. The reaction solution was stirred in a nitrogen atmosphere at 110 C. for 8 hours while heating. The reaction solution was diluted with chloroform and a small volume of methanol and filtered with Celite. The reaction solution, to which water and saturated saline were added, was extracted with chloroform and a small volume of methanol. The organic layer was dried over anhydrous sodium sulfate and then filtered. The filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (1-10% methanol/chloroform) to obtain the title compound (4.59 g) as a solid. 1H-NMR (CDCl3) delta: 7.36 (1H, d, J=8.5 Hz), 6.99 (1H, d, J=8.5 Hz), 4.40 (2H, s), 3.72 (2H, t, J=5.8 Hz), 3.02 (4H, t, J=4.6 Hz), 2.88-2.82 (2H, m), 2.66-2.57 (2H, m), 2.38 (6H, s), 1.66-1.59 (2H, m), 1.49 (9H, s). MS (ESI/APCI) m/z: 414 [M+H]+

787618-22-8 Dicyclohexyl(2′,6′-diisopropoxy-[1,1′-biphenyl]-2-yl)phosphine 121592071, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Patent; Daiichi Sankyo Company, Limited; Ota, Masahiro; Inoue, Hidekazu; Kawai, Junya; Ohki, Hitoshi; Toki, Tadashi; (25 pag.)US2019/284198; (2019); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 564483-18-7

As the paragraph descriping shows that 564483-18-7 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.564483-18-7,2-(Dicyclohexylphosphino)-2′,4′,6′-tri-i-propyl-1,1′-biphenyl,as a common compound, the synthetic route is as follows.

564483-18-7, Example 58A 3-Fluoro-N-(2-fluoro-4-nitrophenyl)-1-[(4-methylphenyl)sulfonyl]-1H-pyrrolo[2,3-b]pyridine-4-amine A solution of 20 mg (0.06 mmol) of 4-chloro-3-fluoro-1-[(4-methylphenyl)sulfonyl]-1H-pyrrolo[2,3-b]pyridine, 11.5 mg (0.074 mmol) of 2-fluoro-4-nitroaniline, 5.6 mg (0.006 mmol) of tris(dibenzylideneacetone)dipalladium, 5.8 mg (0.012 mmol) of dicyclohexyl(2′,4′,6′-triisopropyl-biphenyl-2-yl)phosphine and 12.7 mg (0.09 mmol) of potassium carbonate in 1.00 ml of degassed tert-butanol is stirred in a sealed pressure vessel at 100 C. for 3 h. After cooling to RT, the reaction mixture is filtered through kieselguhr, the kieselguhr is washed with ethyl acetate and the solvent is removed from the filtrate. The residue is purified by preparative HPLC. Yield: 21.5 mg (67% of theory) LC-MS (Method 1): Rt=2.56 min. MS (ESI pos.): m/z=445 (M+H)+.

As the paragraph descriping shows that 564483-18-7 is playing an increasingly important role.

Reference£º
Patent; Bayer HealthCare AG; US2008/269268; (2008); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 6224-63-1

As the paragraph descriping shows that 6224-63-1 is playing an increasingly important role.

6224-63-1, Tri-m-tolylphosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Under a N2 atmosphere, phosphine ligand (2 mmol) (L) was added to a stirred solution of Co2(CO)8 (1 mmol) in tetrahydrofuran or toluene (10 mL). The reaction mixture was stirred for 1 h under CO bubbling at 50 ¡ãC. The organic solvent was evaporated under reduced pressure. The resulting solid was washed several times with diethyl ether and pentane, finally dried under vacuum to give the desired complex., 6224-63-1

As the paragraph descriping shows that 6224-63-1 is playing an increasingly important role.

Reference£º
Article; Ame?zquita-Valencia, Manuel; Rami?rez-Garavito, Ricardo; Toscano, Rube?n A.; Cabrera; Catalysis Communications; vol. 33; (2013); p. 29 – 33;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 13440-07-8

As the paragraph descriping shows that 13440-07-8 is playing an increasingly important role.

13440-07-8, Di(naphthalen-1-yl)phosphine oxide is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

151.2 mg (0.5 mmol) of di(naphthalen-1-yl)phosphine oxide, 147.1 mg (0.5 mmol) 4-phenylmethylene-2,6-di-tert-butyl-2,5-cyclohexadien-1-one, 0.025 mmol of cesium carbonate was added to a Schlenk tube under nitrogen, and added under nitrogen. 1.0 mL of acetonitrile was stirred at 40 C for 6 hours. After the reaction is completed, it is purified by column chromatography and the target product ((3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)bis(1-naphthyl)phosphorus oxide The isolated yield was 83%., 13440-07-8

As the paragraph descriping shows that 13440-07-8 is playing an increasingly important role.

Reference£º
Patent; Hunan Institute of Science and Technology; Xiong Biquan; Wang Gang; Xu Weifeng; Tang Kewen; (9 pag.)CN109456362; (2019); A;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Some tips on 1160861-53-9

As the paragraph descriping shows that 1160861-53-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1160861-53-9,Di-tert-butyl(2′,4′,6′-triisopropyl-3,6-dimethoxy-[1,1′-biphenyl]-2-yl)phosphine,as a common compound, the synthetic route is as follows.

A dry Schlenk flask is charged with 183 mg (0.50 mmol) of [(allyl)PdCl]2 and 257 mg (1.0 mmol) of silver trifluoromethanesulfonate. A second dry Schlenk flask is fitted with a Schlenk frit and is charged with 485 mg (1.0 mmol) of tBuBrettPhos. The flasks are evacuated and backfilled with nitrogen. This evacuation/backfill cycle was repeated a total of three times. 10 mL of anhydrous THF is added to the first flask and the mixture is stirred for 30 min at room temperature (rt) while protecting from light. The mixture from flask one is then transferred via cannula through the Schlenk frit into the second flask to remove the AgCl. The frit is rinsed with an additional 10 mL of anhydrous THF. The mixture is stirred at room temperature for 2 hours, followed by the slow addition of 30 mL of hexanes to obtain a pale yellow precipitate. It is filtered, washed (2*10 mL of hexanes) and dried in vacuo to give 653 mg (0.84 mmol, 84%) of analytically pure (pi-allyl)Pd(tBuBrettPhos)OTf as a slightly yellow solid; 1H NMR (400 MHz, CDCl3, delta): 7.45 (d, J=1.8 Hz, 1H), 7.28 (d, J=1.7 Hz, 1H), 7.07 (dd, J=2.9 Hz, 9.0 Hz, 1H), 6.96 (dd, J=2.9 Hz, 8.9 Hz, 1H), 5.52 (sept, J=7.1 Hz, 1H), 4.39 (app d, J=6.3 Hz, 1H), 3.83 (s, 3H), 3.35 (dd, J=9.2 Hz, 13.9 Hz, 1H), 3.32 (s, 3H), 2.97 (sept, J=6.9 Hz, 1H), 2.78 (app d, J=12.4 Hz, 1H), 2.54 (sept, J=6.7 Hz, 1H), 2.30-1.12 (m, 2H), 1.45-1.27 (m, 24H), 1.24 (dd, J=6.9 Hz, 11.8 Hz, 6H), 0.87 (d, J=6.9 Hz, 3H), 0.70 (d, J=6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3, delta): 156.3, 154.6 (2 peaks), 154.5, 152.2, 151.5, 136.5, 136.2, 125.8, 125.7, 125.6, 125.4, 125.2, 122.6, 119.7, 119.6, 119.4, 116.2, 115.5 (2 peaks), 112.8 (2 peaks), 112.0 (2 peaks), 99.8, 99.5, 58.4 (2 peaks), 54.7, 54.6, 39.9, 39.8, 39.3, 39.1, 34.0, 32.1, 32.0, 31.9, 31.7, 31.6 (2 peaks), 25.7, 25.5, 24.6, 24.5, 24.2 [Observed complexity due to C-F and C-P coupling]; 19F NMR (372 MHz, CDCl3, delta): -77.9 (s, 3F); 31P NMR (162 MHz, CDCl3, delta): 86.2; Anal. calcd. for C35H54O5F3PSPd: C, 53.81; H, 6.97. Found C, 53.81; H, 7.10., 1160861-53-9

As the paragraph descriping shows that 1160861-53-9 is playing an increasingly important role.

Reference£º
Patent; Johnson Matthey Public Limited Company; Colacot, Thomas; Jon Deangelis, Andrew; (66 pag.)US9777030; (2017); B2;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Brief introduction of 1608-26-0

1608-26-0, 1608-26-0 N,N,N’,N’,N”,N”-Hexamethylphosphinetriamine 15355, achiral-phosphine-ligands compound, is more and more widely used in various fields.

1608-26-0, N,N,N’,N’,N”,N”-Hexamethylphosphinetriamine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a stirred suspension of Ph3P (12.5 mmol, 3280 mg) in dry MeCN (25 mL) solid N-aryl-2-nitrosoaniline 5 (5 mmol) was added portionwise during 30 min under external cooling with coldwater, and the mixture was stirred at r.t. overnight. The precipitated solid was filtered off, the filtrate was concentrated under vacuum and the residue was chromatographed using hexane-EtOAc gradient elution (9:1 to 2:1). An analytically pure sample of the product was obtained by recrystallization from EtOAc-hexane.

1608-26-0, 1608-26-0 N,N,N’,N’,N”,N”-Hexamethylphosphinetriamine 15355, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Article; ?ukasik, Emilia; Wrobel, Zbigniew; Synthesis; vol. 48; 8; (2016); p. 1159 – 1166;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 19845-69-3

The synthetic route of 19845-69-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.19845-69-3,1,6-Bis(diphenylphosphino)hexane,as a common compound, the synthetic route is as follows.

1,6-bis (diphenylphosphino) hexane (1.37 g, 3 mmol),10- (4-bromophenoxy) decanol (3.9 g, 12 mmol),Ethylene glycol 10mL and nickel bromide 50mg added to a 50mL three-necked flask and purged with nitrogen,The temperature was raised to 180 C.After 4h magnetic stirring reaction system,After cooling, all the reactants were dissolved in 20 mL of dichloromethane,The organic layer was washed three times with deionized water.After the solution was dried over anhydrous Na2SO4 filtered,The organic phase was washed with a large amount of ether and a large amount of tetrahydrofuran respectively,Compound B3 is then obtained., 19845-69-3

The synthetic route of 19845-69-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Beijing University of Chemical Technology; Wang Zhongming; Yang Qian; Han Kefei; Zhu Hong; (9 pag.)CN107347909; (2017); A;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Brief introduction of 166330-10-5

166330-10-5 (Oxybis(2,1-phenylene))bis(diphenylphosphine) 4285986, achiral-phosphine-ligands compound, is more and more widely used in various fields.

166330-10-5, (Oxybis(2,1-phenylene))bis(diphenylphosphine) is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Dpa (0.0368 g, 0.2 mmol) and POP (0.0539 g, 0.1 mmol) wereadded into the stirring solution of AgClO4 (0.0208 g, 0.1 mmol),in a mixture of CH3CN (5 ml) and H2O (5 ml) at ambient temperature.The mixture was stirred for 6 h. The insoluble residues wereremoved by filtration, and the brown filtrate was evaporatedslowly at room temperature for about four days to yield whitecrystals. Yields: 42percent., 166330-10-5

166330-10-5 (Oxybis(2,1-phenylene))bis(diphenylphosphine) 4285986, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Article; Zhang, Yan-Ru; Cui, Yang-Zhe; Jin, Qiong-Hua; Yang, Yu-Ping; Liu, Min; Li, Zhong-Feng; Bi, Kai-Lun; Zhang, Cun-Lin; Polyhedron; vol. 122; (2017); p. 86 – 98;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate