With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.855-38-9,Tris(4-methoxyphenyl)phosphine,as a common compound, the synthetic route is as follows.,855-38-9
EXAMPLE 3 N-(4-Fluorophenyl)-6-[3-(trifluoromethyl)phenoxy]-pyridine-2-carboxamide 10.26 g (37.5 mmol) of 2-chloro-6-[3-(trifluoromethyl)phenoxy]pyridine (content: 99.5 percent, prepared according to Example 1), 6.25 g (56.2 mmol) of 4-fluoroaniline, 4.37 g (41.3 mmol) of sodium carbonate, 26.3 mg (37.5 mumol) of dichlorobis(triphenylphosphine)palladium(II) and 0.40 g (1.125 mmol) of tris(4-methoxyphenyl)phosphine (IV, R8 =R9 =R10 =methoxy) in 37.5 ml of xylene were placed in an autoclave at room temperature. The autoclave was flushed with inert gas, a carbon monoxide pressure of 5 bar was then applied and the mixture was heated to 150 C. The CO pressure was raised to 18 bar and the mixture was stirred for 21 hours at 150 C. After cooling to room temperature and depressurization, 50 ml of xylene and 50 ml of water were added to the reaction mixture, which was filtered. The aqueous phase was extracted with 25 ml of xylene and the combined organic phases were washed with 30 ml of water. Neither unconverted educt nor by-products were detectable by GC in the xylene phase. After distillation of the solvent, the crude product (15.83 g) was obtained in the form of a yellow solid.
As the paragraph descriping shows that 855-38-9 is playing an increasingly important role.
Reference£º
Patent; Lonza AG; US5900484; (1999); A;; ; Patent; Lonza AG; US5892032; (1999); A;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate