Some tips on 63995-70-0

As the paragraph descriping shows that 63995-70-0 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.63995-70-0,Sodium 3,3′,3”-phosphinetriyltribenzenesulfonate,as a common compound, the synthetic route is as follows.,63995-70-0

Under argon protection,Add to 50mLSchlenk bottle1 ¡¤ 56 mmol of (SO3Na+)3-R6, 4¡¤73 mmol of [CH3 (EO)16N+(n-C6H13) = C(N(CH3) 2) 2] [CH3SO3-] and 10 mL of acetonitrile,The reaction mixture was stirred at room temperature for 72 hours,The filtrate was filtered and the acetonitrile was removed under reduced pressure to give an orange-yellow viscous liquid in 95% yield.

As the paragraph descriping shows that 63995-70-0 is playing an increasingly important role.

Reference£º
Patent; Qingdao University of Science and Technology; JIN, XIN; LI, SHU MEI; ZHAO, KUN; (11 pag.)CN103483381; (2016); B;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Downstream synthetic route of 50777-76-9

As the paragraph descriping shows that 50777-76-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.50777-76-9,2-(Diphenylphosphino)benzaldehyde,as a common compound, the synthetic route is as follows.

50777-76-9, General procedure: To a dichloromethane solution (15 mL) of 2-diphenylphosphinobenzaldehyde (ca. 3 mmol) was added an equimolar amount of the appropriate substituted amine. An excess of magnesium sulphate was also added to the reaction mixture to remove the water by-product. The reaction was left to stir at room temperature for 16 h, after which time the magnesium sulphate was filtered off and the solvent removed from the filtrate in vacuo to give a yellowe orange oil. The oily crude products of ligands 1a-1f were solidified by dissolving the oil in hot hexane, followed by quick hot filtration of the liquid product. The resultant solution was then cooled at -16 ¡ãC overnight to give an off-white powder, which was filtered and dried in vacuo.

As the paragraph descriping shows that 50777-76-9 is playing an increasingly important role.

Reference£º
Article; Mogorosi, Mokgolela M.; Mahamo, Tebello; Moss, John R.; Mapolie, Selwyn F.; Slootweg, J. Chris; Lammertsma, Koop; Smith, Gregory S.; Journal of Organometallic Chemistry; vol. 696; 23; (2011); p. 3585 – 3592;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Analyzing the synthesis route of 13689-19-5

13689-19-5, 13689-19-5 Tricyclohexylphosphine oxide 26187, achiral-phosphine-ligands compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.13689-19-5,Tricyclohexylphosphine oxide,as a common compound, the synthetic route is as follows.

General procedure: The same general procedure was adopted for the synthesis of all the complexes. The lanthanide bromide and tricyclohexylphosphineoxide were dissolved in hot ethanol. Heating was continued for 1 h during which time, in some cases, small quantities of crystalline material formed. Either cooling to room temperature followed by standing for 16 h or on prolonged standing and slow evaporation of the solution afforded crystalline materials. The crystals were filtered, washed with ethanol and dried at the pump. Representative syntheses and characterisations are described below.

13689-19-5, 13689-19-5 Tricyclohexylphosphine oxide 26187, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Article; Bowden, Allen; Lees, Anthony M.J.; Platt, Andrew W.G.; Polyhedron; vol. 91; (2015); p. 110 – 119;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 50777-76-9

As the paragraph descriping shows that 50777-76-9 is playing an increasingly important role.

50777-76-9, 2-(Diphenylphosphino)benzaldehyde is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

50777-76-9, A mixture of 0.14 g (0.48 mmol) 2-(diphenylphosphino)benzaldehyde and 0.05 g (0.48 mmol) ethyl carbazate was dissolved, by heating, in 25 mL ethanol. pH of the mixture was adjusted to ?4 with a hydrochloric acid. The mixture was heated at 56 ¡ãC for 60 min. The reaction solution was left to stand at room temperature while the colourless crystals separated from the solution. Yield 0.15 g (83percent). Mp 164-166 ¡ãC. IR (vs-very strong, s-strong, m-medium, w-weak): 3253 (w), 3189 (w), 3049 (m), 2974 (w), 1729 (m), 1707 (s), 1550 (s), 1458 (w), 1435 (w), 1385 (w), 1247 (vs), 1178 (w), 1092 (w), 1055 (m), 763 (w), 744 (w), 696 (m), 657 (w), 499 (w). HRMS (ESI) of C22H21N2O2P found for (M+H+) 377.1384, calcd (m/z) for (M+H+) 377.1414.

As the paragraph descriping shows that 50777-76-9 is playing an increasingly important role.

Reference£º
Article; Milenkovic?, Milica; Bacchi, Alessia; Cantoni, Giulia; Radulovic?, Sinis?a; Gligorijevic?, Nevenka; Arandelovic?, Sandra; Sladic?, Dus?an; Vujc?ic?, Miroslava; Mitic?, Dragana; Andelkovic?, Katarina; Inorganica Chimica Acta; vol. 395; (2013); p. 33 – 43;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 255835-82-6

As the paragraph descriping shows that 255835-82-6 is playing an increasingly important role.

255835-82-6, Dicyclohexyl(2′-methoxy-[1,1′-biphenyl]-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 24 Synthesis of N-(4-methylphenyl)indole An oven-dried test tube was purged with argon and then charged with 2-dicyclohexylphosphino-2′-methoxy-1,1′-biphenyl (14.5 mg, 0.038 mmol, 7.5 mol %) and Pd2(dba)3 (11.6 mg, 0.013 mmol, 5.0 mol % Pd). Toluene (1.0 mL), indole (71 mg, 0.61 mmol), 4-chlorotoluene (60 mL, 0.51 mmol), and NaOt-Bu (70 mg, 0.73 mmol) were then added. The tube was fitted with a septum, purged with argon and heated at 100 C. for 28 h. The reaction was then cooled to room temperature, diluted with ether (20 mL), filtered through Celite and concentrated in vacuo. The residue was purified by flash chromatography on silica gel to afford 99 mg (94%) of a colorless oil., 255835-82-6

As the paragraph descriping shows that 255835-82-6 is playing an increasingly important role.

Reference£º
Patent; Massachusetts Institute of Technology; US6307087; (2001); B1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Brief introduction of 1070663-78-3

1070663-78-3 Dicyclohexyl(2′,4′,6′-triisopropyl-3,6-dimethoxy-[1,1′-biphenyl]-2-yl)phosphine 25112535, achiral-phosphine-ligands compound, is more and more widely used in various fields.

1070663-78-3, Dicyclohexyl(2′,4′,6′-triisopropyl-3,6-dimethoxy-[1,1′-biphenyl]-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

1070663-78-3, General Procedure 1. A solution of BrettPhos (1.5 eq) and aryl bromide (6.0 eq) in THF (15 mL mmol-1) was added to a vial containing (COD)Pd(CH2TMS)2 (1.0 eq). The resulting yellow solution was stirred for 48 h and then layered with twice the volume of pentane and left standing. After 24 h, the resulting solid was filtered off, washed with pentane and dried under vacuum. Preparation of (BrettPhos)Pd(2-Me,4-CF3C6H3)(Br). According to general procedure 1, (COD)Pd(CH2TMS)2 (144 mg, 0.37 mmol) was reacted with BrettPhos (300 mg, 0.56 mmol) and 2-methyl-4-trifluoromethylbromobenzene (531 mg, 2.22 mmol) in 6 mL THF to afford 218 mg (247 mummol, 67%) of the desired complex as a white powder. 31P-NMR (162 MHz, CDCl3): delta=43.9 ppm. 19F-NMR (376 MHz): delta=-62.1 ppm. 1H (500 MHz, CDCl3): complex spectrum, shown in FIG. 9.

1070663-78-3 Dicyclohexyl(2′,4′,6′-triisopropyl-3,6-dimethoxy-[1,1′-biphenyl]-2-yl)phosphine 25112535, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Patent; Massachusetts Institute of Technology; US2011/15401; (2011); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 657408-07-6

As the paragraph descriping shows that 657408-07-6 is playing an increasingly important role.

657408-07-6, Dicyclohexyl(2′,6′-dimethoxy-[1,1′-biphenyl]-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,657408-07-6

To an oven-dried 25 mL round bottom flask equipped with a Teflon-coated magnetic stir bar and rubber septum was added 2-dicyclohexylphosphino-2’6’dimethoxybiphenyl (5.13 g, 12.5 mmol) and CH2Cl2 (5 mL). The solution was cooled to 0 C. using an ice/water bath and then concentrated H2SO4 (32.5 mL, 625 mmol) was added dropwise. The solution slowly turned yellow in color. The solution was heated to 40 C. in a preheated oil bath and was allowed stir for 24 h. At this time it was cooled to 0 C. using an ice/water bath and crushed ice (50 g) was added. The solution turned cloudy and white in color. An aqueous solution of NaOH (6.0 M, 200 mL) was then added dropwise to the cooled solution until it became neutral (pH 7.0 as judged by pH paper). The aqueous solution was extracted with CH2Cl2 (3¡Á300 mL) and concentrated under reduced pressure to give a light yellow solid. The crude material was then dissolved in a minimum amount of cold methanol (20 mL), filtered and concentrated (this cycle was repeated) to give sodium 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl-3′-sulfonate (2) as a light yellow solid (6.35 g, 99%). Mp=165 C. (turned red, dec.) 1H NMR (400 MHz, CD3OD) delta: 7.88 (d, 1H, J=8.8 Hz), 7.60 (m, 1H), 7.36 (m, 2H), 7.22 (m, 1H), 6.76 (d, 1H, J=8.8 Hz) 3.70 (s, 3H), 3.39 (s, 3H), 1.14-2.01 (m, 22H). 13C NMR (125 MHz, CD3OD) delta: 161.3, 157.1, 143.3, 142.9, 137.9, 137.8, 133.7, 133.6, 133.3, 133.2, 131.9, 130.0, 129.3, 128.0, 127.9, 127.8, 105.9, 61.6, 56.1, 50.0, 37.0, 36.9, 34.8, 34.6, 31.7, 31.6, 31.5, 31.2, 31.0, 30.8, 30.7, 28.9, 28.8, 28.7, 28.4, 28.34, 28.31, 28.2, 27.8, 27.7. 31P NMR (162 MHz, CD3OD) delta: -8.02. IR (neat, cm-1): 3453, 2925, 2849, 1577, 1462, 1448, 1400, 1229, 1191, 1099, 1053, 736. Anal. Calcd for C26H34NaO5PS: C, 60.92; H, 6.69. Found: C, 60.40; H, 6.85. 1H NMR (d4-MeOH/D2O) is shown in FIG. 7. 31P NMR (d4-MeOH) is shown in FIG. 7.

As the paragraph descriping shows that 657408-07-6 is playing an increasingly important role.

Reference£º
Patent; Massachusetts Institute of Technology; US2006/173186; (2006); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Analyzing the synthesis route of 855-38-9

855-38-9 Tris(4-methoxyphenyl)phosphine 70071, achiral-phosphine-ligands compound, is more and more widely used in various fields.

855-38-9, Tris(4-methoxyphenyl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,855-38-9

Compound Re-9 (65mg, 0.12mmol) and tris(4-methoxyphenyl)phosphine (2, 56mg, 0.16mmol) in acetonitrile (anhydrous, 10mL) were added into a flask under a stream of nitrogen. After reflux at 100C overnight and concentrated, the Re-10 (light yellow solid, 38.6mg, 37%) was obtained via a silica gel chromatography (dichloromethane/methane=20/1, v/v). 1H NMR (400MHz, MeOD-d4) delta 7.67-7.62 (m, 6H, CH-Ph), 7.27-7.24 (m, 6H, CH-Ph), 6.21 (t, J=2.28Hz, 2H, CH-Cp), 5.63 (t, J=2.28Hz, 2H, CH-Cp), 3.93 (s, 9H, PhOCH3), 3.23-3.15 (m, 2H, O=C-CH2), 2.67 (t, J=6.84Hz, 2H, CH2-P), 1.73-1.62 (m, 4H, CH2-CH2), 1.59-1.54 (m, 2H, CH2). 31P NMR (400MHz, MeOD-d4) delta 21.38. HRMS (+TOF MS): m/z calculated for C35H35ReO7P+ [M]+ 785.1672, found 785.1676.

855-38-9 Tris(4-methoxyphenyl)phosphine 70071, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Article; Li, Xiaoyan; Chen, Shuting; Liu, Zelan; Zhao, Zuoquan; Lu, Jie; Journal of Organometallic Chemistry; vol. 871; (2018); p. 28 – 35;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Analyzing the synthesis route of 7650-91-1

As the paragraph descriping shows that 7650-91-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7650-91-1,Benzyldiphenylphosphine,as a common compound, the synthetic route is as follows.

7650-91-1, General procedure: The following procedure was used in place of the general procedure for this reaction: SiO2 (0.0561 g) and di-(mu-acetato)bis-{2-[(N,N-dimethylamino)methyl]phenyl-C,N}dipalladium(II) 1a (0.0222 g, 0.0370 mmol) were mixed first in a small round-bottomed flask. A stir bar was inserted and the flask, septum, and stirring spatula were all transferred to a glove box with an atmosphere of N2. Benzyldiphenylphosphine 7 (0.020 g, 0.072 mmol) was then added to the flask and thoroughly mixed with the spatula. The reaction was allowed to stir at room temperature in the glove box. The flask was capped with the septum before being removed from the glove box and put in a preheated oil bath (100 C) for 2 h. No CaCl2-filled syringe was used in this reaction. The reaction mixture was filtered into a flask with LiCl as described in the general procedure and purified using preparative TLC in CH2Cl2.

As the paragraph descriping shows that 7650-91-1 is playing an increasingly important role.

Reference£º
Article; Lamb, Jessica R.; Stepanova, Valeria A.; Smoliakova, Irina P.; Polyhedron; vol. 53; (2013); p. 202 – 207;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Brief introduction of 15929-43-8

15929-43-8 Bis(4-(trifluoromethyl)phenyl)phosphine oxide 12022239, achiral-phosphine-ligands compound, is more and more widely used in various fields.

15929-43-8, Bis(4-(trifluoromethyl)phenyl)phosphine oxide is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

169 mg (0.5 mmol) of bis(4-trifluoromethylphenyl)phosphorus,115.5 mg (0.75 mmol) of 4,4-dimethoxy-2,5-cyclohexadien-1-one,0.05 mmol of water and 1.0 mL of toluene were placed in a Schlenk tube under nitrogen, and the reaction was stirred at 100 C for 12 hours. After completion of the reaction, it was purified by column chromatography, and the isolated yield was 69%., 15929-43-8

15929-43-8 Bis(4-(trifluoromethyl)phenyl)phosphine oxide 12022239, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Patent; Hunan Institute of Science and Technology; Xiong Biquan; Wang Gang; Tang Kewen; Xu Weifeng; (8 pag.)CN109096331; (2018); A;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate