New learning discoveries about 13991-08-7

13991-08-7, The synthetic route of 13991-08-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.13991-08-7,1,2-Bis(diphenylphosphino)benzene,as a common compound, the synthetic route is as follows.

Example 7 (EX 7) (0136) IrCl3(THT)3 (150 mg, 0.27 mmol) was placed in a round-bottom flask, (0137) (119 mg, 0.27 mmol), 15 ml decalin, and 15 ml dimethylformamide were subsequently added thereto to obtain the first mixture. The first mixture was heated under reflux and under a nitrogen atmosphere for a period of 6 hours. After the reaction was completed and the temperature was cooled down to room temperature, decalin in the first mixture was removed by reduced pressure distillation. Thereafter, (0138) (51 mg, 0.27 mmol) and 15 ml dimethylformamide were sequentially added to the first mixture, from which decalin was removed, to obtain a second mixture. The second mixture was heated under reflux and under a nitrogen atmosphere for a second reaction period of 12 hours. After the reaction was completed and the temperature was reduced to room temperature, dimethylformamide in the second mixture was removed by reduced pressure distillation to obtain a solid. The solid was washed using diethyl ether to obtain an intermediate product (400 mg, 70% yield).

13991-08-7, The synthetic route of 13991-08-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; National Tsing Hua University; Chi, Yun; Liao, Jia-Ling; US8957208; (2015); B1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 166330-10-5

As the paragraph descriping shows that 166330-10-5 is playing an increasingly important role.

166330-10-5, (Oxybis(2,1-phenylene))bis(diphenylphosphine) is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: PyIm-Cu(I) complexes P1?P4 were synthesized by the following route: [Cu(CH3CN)4](PF6) (0.124g, 0.4mmol) and POP (0.216g, 0.4mmol) reacted in dichloromethane (15ml) at 25¡ãC for 2h. Then, the corresponding PyIm ligand (0.4mmol) was dissolved in the degassed dichloromethane solution and injected into the mixed solution for 2h. The resulting mixture was filtered through a plug of Celite and concentrated to ca. 1ml. Addition of Et2O (10ml) to the filtrate afforded a pale yellow precipitate, which was collected and washed with Et2O. And the product was recrystallized with ethanol., 166330-10-5

As the paragraph descriping shows that 166330-10-5 is playing an increasingly important role.

Reference£º
Article; Wang, Jinglan; Chai, Chaoyang; Xu, Shengxian; Zhao, Feng; Xia, Hongying; Wang, Yibo; Inorganica Chimica Acta; vol. 484; (2019); p. 237 – 244;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 166330-10-5

As the paragraph descriping shows that 166330-10-5 is playing an increasingly important role.

166330-10-5, (Oxybis(2,1-phenylene))bis(diphenylphosphine) is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

[Cu(CH3CN)4]ClO4 (16.3 mg, 0.050 mmol) was added to a mixtureof ppipH (19.3 mg, 0.050 mmol) and POP (27.9 mg, 98%,0.050 mmol) in DCM under a stream of dry argon with a vacuum-line system and Schlenk techniques and the mixture was stirredfor 2 h at room temperature. After filtration, layering n-hexanecarefully onto the DCM filtrate produced orange-yellow crystals afew days later as 1aCH2Cl2. The orange-yellow product wasobtained in a 55.4% yield (32.4 mg) after being dried under aninfrared lamp. Mp: 200.9-201.7 C. 1H NMR (400 MHz, DMSO-d6,d, ppm): 14.67 (s, 1H, NH), 9.07 (d, J = 8.0 Hz, 2H), 8.87 (d,J = 4.4 Hz, 2H), 7.93 (s, br, 2H), 7.45 (td, J = 7.6 Hz, J0 = 1.2 Hz, 2H),7.32-7.18 (m, 14H), 7.10 (t, J = 7.6 Hz, 2H), 7.00-6.96 (m, 8H),6.65-6.62 (m, 2H). 31P NMR (400 MHz, DMSO-d6, d, ppm):11.22. Characteristic IR spectrum (KBr, cm1): 3144 s (NH),1097 s (ClO4). ESI-MS (m/z): 987.1493 [Cu(ppipH)(POP)]+ (Calc.987.1497)., 166330-10-5

As the paragraph descriping shows that 166330-10-5 is playing an increasingly important role.

Reference£º
Article; Liu, Xia; Shan, Yuyu; Xu, Jie; Zhang, Xia; Shang, Sitong; Li, Xiu-Ling; Polyhedron; vol. 164; (2019); p. 152 – 158;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Brief introduction of 18437-78-0

18437-78-0 Tris(4-fluorophenyl)phosphine 140387, achiral-phosphine-ligands compound, is more and more widely used in various fields.

18437-78-0, Tris(4-fluorophenyl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of 0.28 g (0.76 mmol) of iodo aminoester (S)-2-(t-butyloxycarbonylamino)allyl-4-iodobutanoate (III’) and 0.48 g (1.5 mmol) of [tri-(4- fluorophenyl) ]phosphine in THF was stirred 24h under argon at 80¡ãC. Then, 3 mL of toluene followed by 30 mL of diethyl ether were added to the mixture at room temperature. The white precipitate was filtered off and washed with 2 x 25 mL of diethyl ether and purified by chromatography with a mixture of acetone / petroleum ether (2 : 7) as eluent. The phosphonium salt (Il’d) was isolated in 63percent yield. Pale yellow solid. 31P NMR (121 MHz, CDCl3) : 5(ppm) = +26 (s)., 18437-78-0

18437-78-0 Tris(4-fluorophenyl)phosphine 140387, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Patent; CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS); UNIVERSITE DE BOURGOGNE; JUGE, Sylvain; BAYARDON, Jerome; REMOND, Emmanuelle; ONDEL-EYMIN, Marie-Joelle; WO2013/30193; (2013); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Brief introduction of 564483-19-8

564483-19-8 Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine 11618717, achiral-phosphine-ligands compound, is more and more widely used in various fields.

564483-19-8, Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

564483-19-8, (2) A suspension of the compound obtained in (1) (107 g), ethyl 1H-pyrazole-4-carboxylic acid (59.22 g), tripotassium phosphate (112.14 g), 2-di-t-butylphosphino-2′,4′,6′-triisopropyl biphenyl (11.22 g) and tris(dibenzylideneacetone)dipalladium(0) (8.06 g) in t-butyl alcohol (1173 mL) was stirred under nitrogen atmosphere for 4 hours at 90 C. The reaction mixture was added with water and filtered, and the resulting crystals were washed with methanol. The crystals were then dissolved in chloroform, and NH-silica gel (300 mL), silica gel (300 mL) and sodium sulfate (200 g) were added, followed by filtration to remove the insoluble material. The filtrate was concentrated under reduced pressure, the residue was added with methanol. The resulting crystals were corrected by filtration to yield ethyl 1-[7-methoxy-2-(4-methoxybenzyl)-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-1H-pyrazole-4-carboxylate (99.62 g, 69% yield) as colorless crystals. MS (ESI) m/z: 409 [M+H]+.

564483-19-8 Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine 11618717, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Patent; MITSUBISHI TANABE PHARMA CORPORATION; Nakajima, Tatsuo; Goi, Takashi; Kawata, Atsushi; Sugahara, Masakatsu; Yamakoshi, Shuhei; US2015/239889; (2015); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Downstream synthetic route of 166330-10-5

The synthetic route of 166330-10-5 has been constantly updated, and we look forward to future research findings.

166330-10-5, (Oxybis(2,1-phenylene))bis(diphenylphosphine) is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: NHC-Cu(I) complexes 1-3 were synthesized by the following route:a solution of imidazolium salt (0.4 mmol), copper powder (0.032 g,0.5 mmol) and POP (0.22 g, 0.4 mmol) reacted in CH3CN (5 mL) at60 C for 24 h. The resulting mixture was filtered through a plug ofCelite and concentrated to ca. 1 mL. Addition of Et2O (10 ml) to thefiltrate afforded a pale yellow precipitate, which was collected andwashed with Et2O. And the productwas recrystallized with ethanol., 166330-10-5

The synthetic route of 166330-10-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Wang, Jinglan; Liu, Shaobo; Xu, Shengxian; Zhao, Feng; Xia, Hongying; Wang, Yibo; Journal of Organometallic Chemistry; vol. 846; (2017); p. 351 – 359;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Brief introduction of 564483-19-8

The synthetic route of 564483-19-8 has been constantly updated, and we look forward to future research findings.

564483-19-8, Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

564483-19-8, Example 526 29 mg of 3,5-difluorophenol, 79 mg of tripotassium phosphate, 4.7 mg of 2-(di-tert-butylphosphino)-2′,4′,6′-triisopropylbiphenyl and 6.8 mg of tris(dibenzylideneacetone)dipalladium(0) were added to 1.4 mL of toluene solution containing 70 mg of tert-butyl 2-(benzamido)-4-bromobenzoate at room temperature, and the resulting mixture was heated to reflux under nitrogen atmosphere for 3 hours. After the reaction mixture was cooled to room temperature, ethyl acetate and 10% citric acid aqueous solution were added and insoluble were removed by filtration. The organic layer was separated and dried over anhydrous magnesium sulfate after washed with a saturated sodium chloride aqueous solution, and the solvent was evaporated under reduced pressure. The obtained residue was purified with silica gel column chromatography [PSQ100B (spherical) manufactured by Fuji Silysia Chemical Ltd., eluent; hexane: ethyl acetate = 10:1] to obtain 71 mg of tert-butyl 2-(benzamido)-4-(3,5-difluorophenoxy)benzoate as colorless oil. 1H-NMR (CDCl3) delta: 1.64 (9H, s), 6.56-6.63 (3H, m), 6.73 (1H, dd, J = 8.8, 2.4 Hz), 7.50-7.60 (3H, m), 8.01-8.07 (3H, m), 8.70 (1H, d, J = 2.4 Hz), 12.34 (1H, s).

The synthetic route of 564483-19-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; TOYAMA CHEMICAL CO., LTD.; EP1820795; (2007); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 13689-19-5

13689-19-5, As the paragraph descriping shows that 13689-19-5 is playing an increasingly important role.

13689-19-5, Tricyclohexylphosphine oxide is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The same general procedure was adopted for the synthesis of all the complexes. The lanthanide bromide and tricyclohexylphosphineoxide were dissolved in hot ethanol. Heating was continued for 1 h during which time, in some cases, small quantities of crystalline material formed. Either cooling to room temperature followed by standing for 16 h or on prolonged standing and slow evaporation of the solution afforded crystalline materials. The crystals were filtered, washed with ethanol and dried at the pump. Representative syntheses and characterisations are described below.

13689-19-5, As the paragraph descriping shows that 13689-19-5 is playing an increasingly important role.

Reference£º
Article; Bowden, Allen; Lees, Anthony M.J.; Platt, Andrew W.G.; Polyhedron; vol. 91; (2015); p. 110 – 119;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Analyzing the synthesis route of 7650-91-1

As the paragraph descriping shows that 7650-91-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7650-91-1,Benzyldiphenylphosphine,as a common compound, the synthetic route is as follows.

7650-91-1, A mixture of Fe2(l-pdt)(CO)6 (0.097 g, 0.25 mmol), Ph2P(CH2Ph) (0.083 g, 0.3 mmol) and Me3NO2H2O (0.034 g, 0.3 mmol) was dissolved in MeCN (15 mL). The mixture was stirred at room temperature for 0.5 h to give a brown-red solution. The solvent was removed on a rotary evaporator and the residue was subject to preparative TLC separationusing CH2Cl2/petroleum ether (v/v1:5) as eluent. From the main red band, 1(0.076 g, 48%) was obtained as a red solid. Anal. Calcd for C27H23Fe2O5PS2: C, 51.13; H,3.66%. Found: C, 50.95; H, 3.87%. FT-IR (KBr disk, cm-1): mCO 2041 (vs.), 1979 (vs.),1954 (s), 1922 (m). 1H NMR (600 MHz, CDCl3, TMS, ppm): 7.68 (s, 4H, 2xPPhH-o), 7.44 (s,6H, 2xPPhH-m,p), 7.17 (s, 1H, CH2PhH-p), 7.11 (s, 2H, CH2PhH-o), 6.71 (s, 2H, CH2PhHm),3.87 (s, 2H, CH2Ph), 1.86 (s, 2H, 2xSCHeHa), 1.65-1.51 (m, 2xSCHeHa and CH2).31P{1H} NMR (243 MHz, CDCl3, 85% H3PO4, ppm): 63.14 (s).

As the paragraph descriping shows that 7650-91-1 is playing an increasingly important role.

Reference£º
Article; Zhao, Pei-Hua; Ma, Zhong-Yi; Hu, Meng-Yuan; Jing, Xing-Bin; Wang, Yan-Hong; Liu, Xu-Feng; Journal of Coordination Chemistry; vol. 71; 16-18; (2018); p. 2941 – 2952;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 166330-10-5

As the paragraph descriping shows that 166330-10-5 is playing an increasingly important role.

166330-10-5, (Oxybis(2,1-phenylene))bis(diphenylphosphine) is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: DPEphos (0.1077 g, 0.2 mmol) and dppe (0.0396 g, 0.1 mmol) were dissolved in the mixture of CH2Cl2, CH3OH (10 ml, v/v = 1/1), adding AgOTf (0.0513 g, 0.2 mmol) into the reaction flask. After stirring for 18 h and then filtrating, the filtrate was slow evaporated at ambient temperature. 8 days later, colorless block-shaped crystals were obtained. Yield: 39.2percent (0.0935 g). Anal. Calc. for(C63H52AgF3O4P4S): C, 63.38; H, 4.36; N, 0. Found: C, 63.26; H,4.32; N, 0percent. IR (cm-1, KBr pellets): 3467br, 3055m, 1968w,1660m, 1587m, 1564m, 1482s, 1461s, 1435vs, 1280vs, 1253vs,1223s, 1160s, 1097s, 1069m, 1029vs, 999m, 877w, 798m, 746s,724m, 694vs, 636s, 572w, 512s, 473m, 448w, 421w. 1H NMR(600 MHz, CDCl3): 2.90 (d, 4H, dppe), 6.66?7.28 (m, 48H, Ph). 31P{1H} NMR (243 MHz, CD3Cl): 5.1 (br, d, JAg?P = 364.5 Hz, dppe),5.3 (dt, J19F?P = 211.4 Hz, dppe), 10.1 (2d, J19F?P = 102.1 Hz, DPEphos),11.3 (2d, J19F?P = 116.7 Hz, DPEphos), 11.5 (dd, J109Ag?P = 245.4 Hz,J107Ag?P = 235.7 Hz, DPEphos)., 166330-10-5

As the paragraph descriping shows that 166330-10-5 is playing an increasingly important role.

Reference£º
Article; Gao, Sen; Li, Zhong-Feng; Liu, Min; Jin, Qiong-Hua; Chen, Yu; Deng, Zi-Jun; Zhang, Zhen-Wei; Zhang, Cun-Li; Polyhedron; vol. 83; (2014); p. 10 – 15;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate