New learning discoveries about 6163-58-2

The synthetic route of 6163-58-2 has been constantly updated, and we look forward to future research findings.

6163-58-2,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.6163-58-2,Tri-o-tolylphosphine,as a common compound, the synthetic route is as follows.

Example 21A 6-chloro-5-[(E)-2-pyridin-4-ylvinyl]pyridin-3-amine A solution of 3-amino-5-bromo-6-chloropyridine (2.0 g, 9.64 mmol), Pd2(dba)3 (440 mg, 0.48 mmol), tri-o-tolylphosphine (438 mg, 1.44 mmol), 4-vinylpyridine (2.08 mL, 19.28 mmol), and triethylamine (4.03 mL, 29 mmol) in DMF (30 mL) was stirred at 100 C. for 15 hours, cooled to room temperature, treated with ethyl acetate (200 mL), washed twice with brine, dried (MgSO4), filtered and concentrated. The residual solid recrystallized from hexanes/dichloromethane to provide desired product (1.86 g, 84%). MS (APCI) m/e 232 (M+H)+.

The synthetic route of 6163-58-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Li, Qun; Woods, Keith W.; Zhu, Gui-Dong; Fischer, John P.; Gong, Jianchun; Li, Tongmei; Gandhi, Virajkumar; Thomas, Sheela A.; Packard, Garrick K.; Song, Xiaohong; Abrams, Jason N.; Diebold, Robert; Dinges, Jurgen; Hutchins, Charles; Stoll, Vincent S.; Rosenberg, Saul H.; Giranda, Vincent L.; US2003/187026; (2003); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Downstream synthetic route of 12150-46-8

12150-46-8, The synthetic route of 12150-46-8 has been constantly updated, and we look forward to future research findings.

12150-46-8, 1,1-Bis(diphenylphosphino)ferrocene is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A reaction flask was charged with 1 , l’-bis(diphenylphosphino)ferrocene (1.84 g, 3.32 mmol), bis(l,5-cyclooctadiene)nickel (0.75 g, 2.80 mmol) and oxygen-free toluene (10 mL) under a nitrogen atmosphere in a glovebox. After stirring for 4 h at room temperature, hexanes (40 mL) were added to the reaction mixture. The reaction mixture was allowed to stand overnight, and then the solvents were decanted off and the orange-yellow solid remaining was washed with hexanes. The solid was dried under vacuum to give the title compound as an orange-yellow solid (1.86 g, 78percent yield). 31P NMR (benzene-^): delta 38.4 (s).

12150-46-8, The synthetic route of 12150-46-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; E. I. DU PONT DE NEMOURS AND COMPANY; WO2009/61991; (2009); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 24171-89-9

As the paragraph descriping shows that 24171-89-9 is playing an increasingly important role.

24171-89-9, Tri(thiophen-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: 1a (70.5 mg, 0.20 mmol), 4-phenylthioxanthone (3 mg, 0.01 mmol), CH3OH (30 mL) were added to a pyrex reaction flash which was equipped with a magnetic stirrer. The mixture was irradiated by a 23 W household lamp at rt under air atmosphere. The photoreaction was completed after 40 minutes as monitored by TLC (eluent: petroleum ether). The solvent was removed and the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1?EA) to afford 2a as a solid (74 mg, 100%); 1H NMR (400 MHz, CDCl3) delta 7.56 (dd, J = 11.6, 8.8 Hz, 6 H), 6.95 (dd, J = 8.8, 2.0 Hz, 6 H), 3.83 (s, 9 H)., 24171-89-9

As the paragraph descriping shows that 24171-89-9 is playing an increasingly important role.

Reference£º
Article; Ding, Aishun; Li, Shijie; Chen, Yang; Jin, Ruiwen; Ye, Cong; Hu, Jianhua; Guo, Hao; Tetrahedron Letters; vol. 59; 43; (2018); p. 3880 – 3883;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 50777-76-9

The synthetic route of 50777-76-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.50777-76-9,2-(Diphenylphosphino)benzaldehyde,as a common compound, the synthetic route is as follows.

General procedure: The iminophosphine ligands were prepared according to the method reported by Shirakawa and co-workers [70]. To 2-(diphenylphosphino)enzaldehyde(1) (200 mg, 0.689 mmol) 0.758 mmol (1.1 M equivalent) of the corresponding amine and 10 mL of freshly distilled toluene were added. The mixture was stirred under reflux (150?160 ¡ãC oil bath temperature) for 6 h.The solvent was removed in vacuo and the crude product was purified by bulb-to-bulb vacuum distillation (170 ¡ãC at 0.05 mm Hg,consistently used for all products) using a Kugel Rohr apparatus into which argon was continuously piped to prevent the ingress of oxygen. Since the iminophosphine products were unstable onsilica, no Rf-values are included for the iminophosphine ligands., 50777-76-9

The synthetic route of 50777-76-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Traut-Johnstone, Telisha; Kanyanda, Stonard; Kriel, Frederik H.; Viljoen, Tanya; Kotze, P.D. Riekert; Van Zyl, Werner E.; Coates, Judy; Rees, D. Jasper G.; Meyer, Mervin; Hewer, Raymond; Williams, D. Bradley G.; Journal of Inorganic Biochemistry; vol. 145; (2015); p. 108 – 120;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 13991-08-7

13991-08-7, The synthetic route of 13991-08-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.13991-08-7,1,2-Bis(diphenylphosphino)benzene,as a common compound, the synthetic route is as follows.

Example 7 (EX 7) (0136) IrCl3(THT)3 (150 mg, 0.27 mmol) was placed in a round-bottom flask, (0137) (119 mg, 0.27 mmol), 15 ml decalin, and 15 ml dimethylformamide were subsequently added thereto to obtain the first mixture. The first mixture was heated under reflux and under a nitrogen atmosphere for a period of 6 hours. After the reaction was completed and the temperature was cooled down to room temperature, decalin in the first mixture was removed by reduced pressure distillation. Thereafter, (0138) (51 mg, 0.27 mmol) and 15 ml dimethylformamide were sequentially added to the first mixture, from which decalin was removed, to obtain a second mixture. The second mixture was heated under reflux and under a nitrogen atmosphere for a second reaction period of 12 hours. After the reaction was completed and the temperature was reduced to room temperature, dimethylformamide in the second mixture was removed by reduced pressure distillation to obtain a solid. The solid was washed using diethyl ether to obtain an intermediate product (400 mg, 70% yield).

13991-08-7, The synthetic route of 13991-08-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; National Tsing Hua University; Chi, Yun; Liao, Jia-Ling; US8957208; (2015); B1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 166330-10-5

As the paragraph descriping shows that 166330-10-5 is playing an increasingly important role.

166330-10-5, (Oxybis(2,1-phenylene))bis(diphenylphosphine) is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: PyIm-Cu(I) complexes P1?P4 were synthesized by the following route: [Cu(CH3CN)4](PF6) (0.124g, 0.4mmol) and POP (0.216g, 0.4mmol) reacted in dichloromethane (15ml) at 25¡ãC for 2h. Then, the corresponding PyIm ligand (0.4mmol) was dissolved in the degassed dichloromethane solution and injected into the mixed solution for 2h. The resulting mixture was filtered through a plug of Celite and concentrated to ca. 1ml. Addition of Et2O (10ml) to the filtrate afforded a pale yellow precipitate, which was collected and washed with Et2O. And the product was recrystallized with ethanol., 166330-10-5

As the paragraph descriping shows that 166330-10-5 is playing an increasingly important role.

Reference£º
Article; Wang, Jinglan; Chai, Chaoyang; Xu, Shengxian; Zhao, Feng; Xia, Hongying; Wang, Yibo; Inorganica Chimica Acta; vol. 484; (2019); p. 237 – 244;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 166330-10-5

As the paragraph descriping shows that 166330-10-5 is playing an increasingly important role.

166330-10-5, (Oxybis(2,1-phenylene))bis(diphenylphosphine) is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

[Cu(CH3CN)4]ClO4 (16.3 mg, 0.050 mmol) was added to a mixtureof ppipH (19.3 mg, 0.050 mmol) and POP (27.9 mg, 98%,0.050 mmol) in DCM under a stream of dry argon with a vacuum-line system and Schlenk techniques and the mixture was stirredfor 2 h at room temperature. After filtration, layering n-hexanecarefully onto the DCM filtrate produced orange-yellow crystals afew days later as 1aCH2Cl2. The orange-yellow product wasobtained in a 55.4% yield (32.4 mg) after being dried under aninfrared lamp. Mp: 200.9-201.7 C. 1H NMR (400 MHz, DMSO-d6,d, ppm): 14.67 (s, 1H, NH), 9.07 (d, J = 8.0 Hz, 2H), 8.87 (d,J = 4.4 Hz, 2H), 7.93 (s, br, 2H), 7.45 (td, J = 7.6 Hz, J0 = 1.2 Hz, 2H),7.32-7.18 (m, 14H), 7.10 (t, J = 7.6 Hz, 2H), 7.00-6.96 (m, 8H),6.65-6.62 (m, 2H). 31P NMR (400 MHz, DMSO-d6, d, ppm):11.22. Characteristic IR spectrum (KBr, cm1): 3144 s (NH),1097 s (ClO4). ESI-MS (m/z): 987.1493 [Cu(ppipH)(POP)]+ (Calc.987.1497)., 166330-10-5

As the paragraph descriping shows that 166330-10-5 is playing an increasingly important role.

Reference£º
Article; Liu, Xia; Shan, Yuyu; Xu, Jie; Zhang, Xia; Shang, Sitong; Li, Xiu-Ling; Polyhedron; vol. 164; (2019); p. 152 – 158;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Brief introduction of 18437-78-0

18437-78-0 Tris(4-fluorophenyl)phosphine 140387, achiral-phosphine-ligands compound, is more and more widely used in various fields.

18437-78-0, Tris(4-fluorophenyl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of 0.28 g (0.76 mmol) of iodo aminoester (S)-2-(t-butyloxycarbonylamino)allyl-4-iodobutanoate (III’) and 0.48 g (1.5 mmol) of [tri-(4- fluorophenyl) ]phosphine in THF was stirred 24h under argon at 80¡ãC. Then, 3 mL of toluene followed by 30 mL of diethyl ether were added to the mixture at room temperature. The white precipitate was filtered off and washed with 2 x 25 mL of diethyl ether and purified by chromatography with a mixture of acetone / petroleum ether (2 : 7) as eluent. The phosphonium salt (Il’d) was isolated in 63percent yield. Pale yellow solid. 31P NMR (121 MHz, CDCl3) : 5(ppm) = +26 (s)., 18437-78-0

18437-78-0 Tris(4-fluorophenyl)phosphine 140387, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Patent; CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS); UNIVERSITE DE BOURGOGNE; JUGE, Sylvain; BAYARDON, Jerome; REMOND, Emmanuelle; ONDEL-EYMIN, Marie-Joelle; WO2013/30193; (2013); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Brief introduction of 564483-19-8

564483-19-8 Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine 11618717, achiral-phosphine-ligands compound, is more and more widely used in various fields.

564483-19-8, Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

564483-19-8, (2) A suspension of the compound obtained in (1) (107 g), ethyl 1H-pyrazole-4-carboxylic acid (59.22 g), tripotassium phosphate (112.14 g), 2-di-t-butylphosphino-2′,4′,6′-triisopropyl biphenyl (11.22 g) and tris(dibenzylideneacetone)dipalladium(0) (8.06 g) in t-butyl alcohol (1173 mL) was stirred under nitrogen atmosphere for 4 hours at 90 C. The reaction mixture was added with water and filtered, and the resulting crystals were washed with methanol. The crystals were then dissolved in chloroform, and NH-silica gel (300 mL), silica gel (300 mL) and sodium sulfate (200 g) were added, followed by filtration to remove the insoluble material. The filtrate was concentrated under reduced pressure, the residue was added with methanol. The resulting crystals were corrected by filtration to yield ethyl 1-[7-methoxy-2-(4-methoxybenzyl)-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-1H-pyrazole-4-carboxylate (99.62 g, 69% yield) as colorless crystals. MS (ESI) m/z: 409 [M+H]+.

564483-19-8 Di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine 11618717, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Patent; MITSUBISHI TANABE PHARMA CORPORATION; Nakajima, Tatsuo; Goi, Takashi; Kawata, Atsushi; Sugahara, Masakatsu; Yamakoshi, Shuhei; US2015/239889; (2015); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Downstream synthetic route of 166330-10-5

The synthetic route of 166330-10-5 has been constantly updated, and we look forward to future research findings.

166330-10-5, (Oxybis(2,1-phenylene))bis(diphenylphosphine) is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: NHC-Cu(I) complexes 1-3 were synthesized by the following route:a solution of imidazolium salt (0.4 mmol), copper powder (0.032 g,0.5 mmol) and POP (0.22 g, 0.4 mmol) reacted in CH3CN (5 mL) at60 C for 24 h. The resulting mixture was filtered through a plug ofCelite and concentrated to ca. 1 mL. Addition of Et2O (10 ml) to thefiltrate afforded a pale yellow precipitate, which was collected andwashed with Et2O. And the productwas recrystallized with ethanol., 166330-10-5

The synthetic route of 166330-10-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Wang, Jinglan; Liu, Shaobo; Xu, Shengxian; Zhao, Feng; Xia, Hongying; Wang, Yibo; Journal of Organometallic Chemistry; vol. 846; (2017); p. 351 – 359;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate