Brief introduction of 1160861-53-9

1160861-53-9, 1160861-53-9 Di-tert-butyl(2′,4′,6′-triisopropyl-3,6-dimethoxy-[1,1′-biphenyl]-2-yl)phosphine 44233348, achiral-phosphine-ligands compound, is more and more widely used in various fields.

1160861-53-9, Di-tert-butyl(2′,4′,6′-triisopropyl-3,6-dimethoxy-[1,1′-biphenyl]-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: In a nitrogen-filled glovebox, phosphine ligand (0.21 mmol,1.00 eq.) and [(1,5-cyclooctadiene) Pd(CH2TMS)2] (80 mg,0.21 mmol, 1.00 eq.) were suspended in pentane (5.0 mL). The reaction mixture was stirred vigorously at room temperature, duringwhich time a solid precipitated from solution. After 48 h, thenon-homogenous mixture was filtered though a sintered glass frit.The filter cake was washed with pentane (10.0 mL) to yield thedesired complex. 9: Yellow-green solid (Yield: 106 mg, 79%). IR (neat): 2931,2850, 1580, 1456, 1419, 1376, 1359, 1293, 1252, 1170, 1155,1087, 1044, 1013, 929, 870, 851, 798, 746, 715 cm1.

1160861-53-9, 1160861-53-9 Di-tert-butyl(2′,4′,6′-triisopropyl-3,6-dimethoxy-[1,1′-biphenyl]-2-yl)phosphine 44233348, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Article; Lee, Hong Geun; Milner, Phillip J.; Colvin, Michael T.; Andreas, Loren; Buchwald, Stephen L.; Inorganica Chimica Acta; vol. 422; (2014); p. 188 – 192;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 7650-91-1

7650-91-1 Benzyldiphenylphosphine 603920, achiral-phosphine-ligands compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7650-91-1,Benzyldiphenylphosphine,as a common compound, the synthetic route is as follows.

7650-91-1, Pt(tht)2Cl2 (synthesized according to a method disclosed in J. Chem. Soc., Dalton Trans. 1980, 888-894; 100 mg, 1 eq, ?tht? represents tetrahydrothiophene), benzyldiphenylphosphine purchased from Alfa Aesar (68 mg, 1.1 eq), and sodium acetate (94 mg, 5 eq) were added in a 50 mL round-bottomed flask, and degassed xylene (purchased from ECHOChemical; Product no: XA2101-000000-72EC; 6 mL) was then added therein with mixing to obtain a mixture, followed by heating to 100 C. and reacting for 12 hours. The mixture was then cooled to room temperature, and a precursor solution (PS1) of a phosphorescent four-coordinated platinum (II) complex was obtained. 4-(tert-butyl)-2-(3-trifluoromethyl-1H-pyrazol-5-yl)pyridine (61 mg, 1 eq) was added into the PS1 obtained from Synthesis Example 1 to obtain a mixture, and the mixture was heated to 100 C. and reacted for 6 hours, followed by cooling to room temperature and removing the solvent. Silica-gel column chromatography was conducted to purify the mixture using an eluent of dichloromethane and n-hexane (dichloromethane:n-hexane=1:1 (by volume)). Recrystallization was then conducted using dichloromethane/n-hexane so as to obtain a light yellow crystalline product, referred to as complex E5 (60.8% yield; 102 mg). The reaction scheme for producing the complex E5 is represented as follows: The spectrum analysis for the complex E5 is: 1H NMR (400 MHz, CDCl3, 298 K) delta 8.89 (d, J=8.3 Hz, 1H), 7.83 (dd, J=8.1, 11.7 Hz, 4H), 7.61 (d, J=1.4 Hz, 1H), 7.56 (d, J=6.1 Hz, 1H), 7.42-7.51 (m, 6H), 7.11 (t, J=6.4 Hz, 2H), 6.98 (t, J=7.4 Hz, 1H), 6.94 (s, 1H), 6.64 (dd, J=2.1, 6.1 Hz, 1H), 3.77 (d, J=11.4 Hz, 2H), 1.26 (s, 9H), 19F NMR (400 MHz, CDCl3, 298 K) delta -60.7, 31P NMR (200 MHz, CDCl3, 298 K) delta 36.24, FAB-MS m/z 738.7 M+

7650-91-1 Benzyldiphenylphosphine 603920, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Patent; National Tsing Hua University; Chi, Yun; Huang, Li-Min; US8722885; (2014); B1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Analyzing the synthesis route of 932710-63-9

932710-63-9 4-(Di-tert-butylphosphino)-N,N-dimethylaniline 11714598, achiral-phosphine-ligands compound, is more and more widely used in various fields.

932710-63-9,932710-63-9, 4-(Di-tert-butylphosphino)-N,N-dimethylaniline is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

(r3-1-tBu-indenyl)2(ji-Cl)2Pd2 (3d) (0.300 g, 0.48 mmol) and AmPhos (0.255 g, 0.96 mmol) were added to a 100 mL Schlenk flask and placed under an atmosphere of nitrogen. THF (20 mL) was added to the flask via cannula. The resulting solution was stirred for 60 minutes, during which time the reaction mixture became homogeneous. The mixture was opened to air and 90% of the solvent was evaporated under reduced pressure. Pentanewas added to precipitate solid from solution. A red-orange solid was collected via vacuum filtration. Yield: 0.526 g, 91%.?H NMR (CDC13, 600 MHz): 7.53 (t, 2H), 7.44 (d, 1H), 7.01 (t, 1H), 6.92 (d, 1H), 6.83 (t, 1H), 6.67 (d, 2H), 6.54 (d, 1H), 4.81 (d, 1H), 3.02 (s, 6H), 1.58 (s, 9H), 1.37-1.32 (m, 18H) ppm. ?3C{?H} NMR (CDC13, 150 MHz): 136.85, 136.76, 126.83, 124.44,120.99, 119.18, 110.55, 110.47, 108.43, 108.38, 70.05, 70.02, 40.19, 30.48, 30.44, 30.39,29.69, 29.65 ppm. 31P{?H} NMR (CDC13, 121 MHz): 73.34 ppm. Anal. Calcd for C29H43C1PdPN: C, 60.21; H, 7.49; N, 2.42. Found: C, 59.64; H, 7.51; N, 2.23.

932710-63-9 4-(Di-tert-butylphosphino)-N,N-dimethylaniline 11714598, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Patent; YALE UNIVERSITY; HAZARI, Nilay; MELVIN, Patrick; HRUSZKEWYCZ, Damian; (92 pag.)WO2016/57600; (2016); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Simple exploration of 787618-22-8

As the paragraph descriping shows that 787618-22-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.787618-22-8,Dicyclohexyl(2′,6′-diisopropoxy-[1,1′-biphenyl]-2-yl)phosphine,as a common compound, the synthetic route is as follows.

787618-22-8, General procedure: After purging with argon, a scintillation vial (10 mL), which was equipped with amagnetic stir bar, was charged with RuPhos (1 equiv), the aryl containing drug or the drugderivative, and [(L5-COD)Pd(CT-iSi~1fe3)] (l. l equiv) dissolved in tetrahydrofuran (THF,0.2 M). The closed vial was purged with argon and stined for 16 h. The resulting precipitatewas tlltered, washed with pentane (3 X 3 mL), and dried under reduced pressure to afford theoxidative addition complex (Figure 3). Other potential aryl containing drugs or drugderivatives are shown in Figure 4.

As the paragraph descriping shows that 787618-22-8 is playing an increasingly important role.

Reference£º
Patent; MASSACHUSETTS INSTITUTE OF TECHNOLOGY; BUCHWALD, Stephen, L.; PENTELUTE, Bradley, L.; ZHANG, Chi; (170 pag.)WO2017/151910; (2017); A2;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Some tips on 63995-70-0

As the paragraph descriping shows that 63995-70-0 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.63995-70-0,Sodium 3,3′,3”-phosphinetriyltribenzenesulfonate,as a common compound, the synthetic route is as follows.,63995-70-0

Under argon protection,Add to 50mLSchlenk bottle1 ¡¤ 56 mmol of (SO3Na+)3-R6, 4¡¤73 mmol of [CH3 (EO)16N+(n-C6H13) = C(N(CH3) 2) 2] [CH3SO3-] and 10 mL of acetonitrile,The reaction mixture was stirred at room temperature for 72 hours,The filtrate was filtered and the acetonitrile was removed under reduced pressure to give an orange-yellow viscous liquid in 95% yield.

As the paragraph descriping shows that 63995-70-0 is playing an increasingly important role.

Reference£º
Patent; Qingdao University of Science and Technology; JIN, XIN; LI, SHU MEI; ZHAO, KUN; (11 pag.)CN103483381; (2016); B;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Downstream synthetic route of 50777-76-9

As the paragraph descriping shows that 50777-76-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.50777-76-9,2-(Diphenylphosphino)benzaldehyde,as a common compound, the synthetic route is as follows.

50777-76-9, General procedure: To a dichloromethane solution (15 mL) of 2-diphenylphosphinobenzaldehyde (ca. 3 mmol) was added an equimolar amount of the appropriate substituted amine. An excess of magnesium sulphate was also added to the reaction mixture to remove the water by-product. The reaction was left to stir at room temperature for 16 h, after which time the magnesium sulphate was filtered off and the solvent removed from the filtrate in vacuo to give a yellowe orange oil. The oily crude products of ligands 1a-1f were solidified by dissolving the oil in hot hexane, followed by quick hot filtration of the liquid product. The resultant solution was then cooled at -16 ¡ãC overnight to give an off-white powder, which was filtered and dried in vacuo.

As the paragraph descriping shows that 50777-76-9 is playing an increasingly important role.

Reference£º
Article; Mogorosi, Mokgolela M.; Mahamo, Tebello; Moss, John R.; Mapolie, Selwyn F.; Slootweg, J. Chris; Lammertsma, Koop; Smith, Gregory S.; Journal of Organometallic Chemistry; vol. 696; 23; (2011); p. 3585 – 3592;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Analyzing the synthesis route of 13689-19-5

13689-19-5, 13689-19-5 Tricyclohexylphosphine oxide 26187, achiral-phosphine-ligands compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.13689-19-5,Tricyclohexylphosphine oxide,as a common compound, the synthetic route is as follows.

General procedure: The same general procedure was adopted for the synthesis of all the complexes. The lanthanide bromide and tricyclohexylphosphineoxide were dissolved in hot ethanol. Heating was continued for 1 h during which time, in some cases, small quantities of crystalline material formed. Either cooling to room temperature followed by standing for 16 h or on prolonged standing and slow evaporation of the solution afforded crystalline materials. The crystals were filtered, washed with ethanol and dried at the pump. Representative syntheses and characterisations are described below.

13689-19-5, 13689-19-5 Tricyclohexylphosphine oxide 26187, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Article; Bowden, Allen; Lees, Anthony M.J.; Platt, Andrew W.G.; Polyhedron; vol. 91; (2015); p. 110 – 119;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 50777-76-9

As the paragraph descriping shows that 50777-76-9 is playing an increasingly important role.

50777-76-9, 2-(Diphenylphosphino)benzaldehyde is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

50777-76-9, A mixture of 0.14 g (0.48 mmol) 2-(diphenylphosphino)benzaldehyde and 0.05 g (0.48 mmol) ethyl carbazate was dissolved, by heating, in 25 mL ethanol. pH of the mixture was adjusted to ?4 with a hydrochloric acid. The mixture was heated at 56 ¡ãC for 60 min. The reaction solution was left to stand at room temperature while the colourless crystals separated from the solution. Yield 0.15 g (83percent). Mp 164-166 ¡ãC. IR (vs-very strong, s-strong, m-medium, w-weak): 3253 (w), 3189 (w), 3049 (m), 2974 (w), 1729 (m), 1707 (s), 1550 (s), 1458 (w), 1435 (w), 1385 (w), 1247 (vs), 1178 (w), 1092 (w), 1055 (m), 763 (w), 744 (w), 696 (m), 657 (w), 499 (w). HRMS (ESI) of C22H21N2O2P found for (M+H+) 377.1384, calcd (m/z) for (M+H+) 377.1414.

As the paragraph descriping shows that 50777-76-9 is playing an increasingly important role.

Reference£º
Article; Milenkovic?, Milica; Bacchi, Alessia; Cantoni, Giulia; Radulovic?, Sinis?a; Gligorijevic?, Nevenka; Arandelovic?, Sandra; Sladic?, Dus?an; Vujc?ic?, Miroslava; Mitic?, Dragana; Andelkovic?, Katarina; Inorganica Chimica Acta; vol. 395; (2013); p. 33 – 43;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

New learning discoveries about 255835-82-6

As the paragraph descriping shows that 255835-82-6 is playing an increasingly important role.

255835-82-6, Dicyclohexyl(2′-methoxy-[1,1′-biphenyl]-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 24 Synthesis of N-(4-methylphenyl)indole An oven-dried test tube was purged with argon and then charged with 2-dicyclohexylphosphino-2′-methoxy-1,1′-biphenyl (14.5 mg, 0.038 mmol, 7.5 mol %) and Pd2(dba)3 (11.6 mg, 0.013 mmol, 5.0 mol % Pd). Toluene (1.0 mL), indole (71 mg, 0.61 mmol), 4-chlorotoluene (60 mL, 0.51 mmol), and NaOt-Bu (70 mg, 0.73 mmol) were then added. The tube was fitted with a septum, purged with argon and heated at 100 C. for 28 h. The reaction was then cooled to room temperature, diluted with ether (20 mL), filtered through Celite and concentrated in vacuo. The residue was purified by flash chromatography on silica gel to afford 99 mg (94%) of a colorless oil., 255835-82-6

As the paragraph descriping shows that 255835-82-6 is playing an increasingly important role.

Reference£º
Patent; Massachusetts Institute of Technology; US6307087; (2001); B1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate

Brief introduction of 1070663-78-3

1070663-78-3 Dicyclohexyl(2′,4′,6′-triisopropyl-3,6-dimethoxy-[1,1′-biphenyl]-2-yl)phosphine 25112535, achiral-phosphine-ligands compound, is more and more widely used in various fields.

1070663-78-3, Dicyclohexyl(2′,4′,6′-triisopropyl-3,6-dimethoxy-[1,1′-biphenyl]-2-yl)phosphine is a chiral-phosphine-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

1070663-78-3, General Procedure 1. A solution of BrettPhos (1.5 eq) and aryl bromide (6.0 eq) in THF (15 mL mmol-1) was added to a vial containing (COD)Pd(CH2TMS)2 (1.0 eq). The resulting yellow solution was stirred for 48 h and then layered with twice the volume of pentane and left standing. After 24 h, the resulting solid was filtered off, washed with pentane and dried under vacuum. Preparation of (BrettPhos)Pd(2-Me,4-CF3C6H3)(Br). According to general procedure 1, (COD)Pd(CH2TMS)2 (144 mg, 0.37 mmol) was reacted with BrettPhos (300 mg, 0.56 mmol) and 2-methyl-4-trifluoromethylbromobenzene (531 mg, 2.22 mmol) in 6 mL THF to afford 218 mg (247 mummol, 67%) of the desired complex as a white powder. 31P-NMR (162 MHz, CDCl3): delta=43.9 ppm. 19F-NMR (376 MHz): delta=-62.1 ppm. 1H (500 MHz, CDCl3): complex spectrum, shown in FIG. 9.

1070663-78-3 Dicyclohexyl(2′,4′,6′-triisopropyl-3,6-dimethoxy-[1,1′-biphenyl]-2-yl)phosphine 25112535, achiral-phosphine-ligands compound, is more and more widely used in various fields.

Reference£º
Patent; Massachusetts Institute of Technology; US2011/15401; (2011); A1;,
Phosphine ligand
Chiral phosphine ligands in asymmetric synthesis. Molecular structure and absolute configuration of (1,5-cyclooctadiene)-(2S,3S)-2,3-bis(diphenylphosphino)butanerhodium(I) perchlorate tetrahydrofuran solvate